Spaces:
Runtime error
Runtime error
File size: 6,708 Bytes
5786921 d378496 5786921 d378496 5786921 d378496 5786921 d378496 5786921 d378496 5786921 d378496 ff8da98 5786921 d378496 5786921 d378496 5786921 d378496 5786921 d378496 5786921 d378496 5786921 d378496 5786921 d378496 5786921 d378496 5786921 d378496 5786921 d378496 5786921 d378496 5786921 d378496 5786921 d378496 ff8da98 d378496 5786921 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 |
import {
Alert,
Box,
Button,
CircularProgress,
Paper,
Slider,
Stack,
TextField,
Typography,
} from "@mui/material";
import { useEffect, useRef, useState } from "react";
import { HfInference, SummarizationArgs } from "@huggingface/inference";
import { InferenceProps } from "../huggingface";
import Options from "@/components/base/options";
import SliderWithLabel from "@/components/base/slider-with-label";
import ExampleButton from "@/components/base/example-button";
import Secret from "@/components/base/secret";
type SummarizationProps = InferenceProps & {
/**
* (Default: None). Integer to define the maximum length in tokens of the output summary.
*/
maxLength?: number;
/**
* (Default: None). Float (0-120.0). The amount of time in seconds that the query should take maximum. Network can cause some overhead so it will be a soft limit.
*/
maxTime?: number;
/**
* (Default: None). Integer to define the minimum length in tokens of the output summary.
*/
minLength?: number;
/**
* (Default: None). Float (0.0-100.0). The more a token is used within generation the more it is penalized to not be picked in successive generation passes.
*/
repetitionPenalty?: number;
/**
* (Default: 1.0). Float (0.0-100.0). The temperature of the sampling operation. 1 means regular sampling, 0 means always take the highest score, 100.0 is getting closer to uniform probability.
*/
temperature?: number;
/**
* (Default: None). Integer to define the top tokens considered within the sample operation to create new text.
*/
topK?: number;
/**
* (Default: None). Float to define the tokens that are within the sample operation of text generation. Add tokens in the sample for more probable to least probable until the sum of the probabilities is greater than top_p.
*/
topP?: number;
};
export default function Summarization(props: SummarizationProps) {
const {
model,
maxLength,
maxTime,
minLength,
repetitionPenalty,
temperature,
topK,
topP,
} = props;
const [token, setToken] = useState<string>("");
const [inputText, setInputText] = useState<string>("");
const [summary, setSummary] = useState<string>("");
const [error, setError] = useState<string>("");
const [loading, setLoading] = useState(false);
const inference = useRef<HfInference | null>(null);
useEffect(() => {
inference.current = new HfInference(token);
}, [token]);
// Parse the data of the form and trigger "call"
const handleSubmit = (event: any) => {
event.preventDefault();
const data = new FormData(event.currentTarget);
setToken(data.get("token") as string);
const text = data.get("text") as string;
const max_length = Number(data.get("maxLength") as string);
call({ model, inputs: text, parameters: { max_length } });
};
/**
* Call the inference API using args
*/
const call = async (args: SummarizationArgs) => {
const { inputs, parameters } = args;
try {
setLoading(true);
const response = await inference.current?.summarization({
model,
inputs,
parameters,
});
setSummary(response?.summary_text as string);
setError("");
} catch (error) {
if (error instanceof Error) {
setError(error.message);
} else {
setError("An unknown error occurred");
}
}
setLoading(false);
};
return (
<>
<Paper component="form" onSubmit={handleSubmit} sx={{ padding: "1em" }}>
<Stack spacing={2}>
<TextField
variant="filled"
label="Text to summarize"
multiline
required
minRows={4}
name="text"
value={inputText}
onChange={e => setInputText(e.target.value)}
/>
<Button type="submit" variant="contained" disabled={loading}>
Run{" "}
{loading && (
<CircularProgress
size={24}
sx={{
position: "absolute",
top: "50%",
left: "50%",
marginTop: "-12px",
marginLeft: "-12px",
}}
/>
)}
</Button>
{error && <Alert severity="error">{error}</Alert>}
<TextField
variant="outlined"
label="Summary"
multiline
minRows={2}
name="text"
value={summary}
/>
<Options>
<Secret name="token" label="HF Access Token" />
<SliderWithLabel
label="max_length"
name="maxLength"
aria-label="max length"
defaultValue={maxLength}
step={1}
min={56}
max={256}
/>
</Options>
<Typography variant="h6" sx={{ fontSize: "1em" }}>
Examples
</Typography>
<Stack direction="row" spacing={2}>
<ExampleButton
text="The tower is 324 metres (1,063 ft) tall, about the same height as an 81-storey building, and the tallest structure in Paris. Its base is square, measuring 125 metres (410 ft) on each side. During its construction, the Eiffel Tower surpassed the Washington Monument to become the tallest man-made structure in the world, a title it held for 41 years until the Chrysler Building in New York City was finished in 1930. It was the first structure to reach a height of 300 metres. Due to the addition of a broadcasting aerial at the top of the tower in 1957, it is now taller than the Chrysler Building by 5.2 metres (17 ft). Excluding transmitters, the Eiffel Tower is the second tallest free-standing structure in France after the Millau Viaduct."
onClick={setInputText}
/>
<ExampleButton
text="Machine learning (ML) is a field devoted to understanding and building methods that let machines 'learn' β that is, methods that leverage data to improve computer performance on some set of tasks. Machine learning algorithms build a model based on sample data, known as training data, in order to make predictions or decisions without being explicitly programmed to do so. Machine learning algorithms are used in a wide variety of applications, such as in medicine, email filtering, speech recognition, agriculture, and computer vision, where it is difficult or unfeasible to develop conventional algorithms to perform the needed tasks."
onClick={setInputText}
/>
</Stack>
</Stack>
</Paper>
</>
);
}
|