Spaces:
Running
Running
import gradio as gr | |
import cv2 | |
import requests | |
import os | |
import torch | |
import ultralytics | |
file_urls = [ | |
'https://www.dropbox.com/s/bc9r8n7919cbc77/test-image.jpg?dl=0', | |
'https://www.dropbox.com/s/fkmzgdm6okdzxdk/test-image-2.jpg?dl=0', | |
] | |
def download_file(url, save_name): | |
url = url | |
if not os.path.exists(save_name): | |
file = requests.get(url) | |
open(save_name, 'wb').write(file.content) | |
for i, url in enumerate(file_urls): | |
download_file( | |
file_urls[i], | |
f"image_{i}.jpg" | |
) | |
model = torch.hub.load("ultralytics/yolov5", "custom", path="../yolov5_0.65map_exp7_best.pt", | |
force_reload=False) | |
path = [['image_0.jpg'], ['image_1.jpg']] | |
def show_preds_image(image_path): | |
image = cv2.imread(image_path) | |
outputs = model.predict(source=image_path) | |
results = outputs[0].cpu().numpy() | |
for i, det in enumerate(results.boxes.xyxy): | |
cv2.rectangle( | |
image, | |
(int(det[0]), int(det[1])), | |
(int(det[2]), int(det[3])), | |
color=(0, 0, 255), | |
thickness=2, | |
lineType=cv2.LINE_AA | |
) | |
return cv2.cvtColor(image, cv2.COLOR_BGR2RGB) | |
inputs_image = [ | |
gr.components.Image(type="filepath", label="Input Image"), | |
] | |
outputs_image = [ | |
gr.components.Image(type="numpy", label="Output Image"), | |
] | |
interface_image = gr.Interface( | |
fn=show_preds_image, | |
inputs=inputs_image, | |
outputs=outputs_image, | |
title="Pothole detector", | |
examples=path, | |
cache_examples=False, | |
) |