jonas's picture
changed model path
f5fce6a
raw
history blame
1.56 kB
import gradio as gr
import cv2
import requests
import os
import torch
import ultralytics
file_urls = [
'https://www.dropbox.com/s/bc9r8n7919cbc77/test-image.jpg?dl=0',
'https://www.dropbox.com/s/fkmzgdm6okdzxdk/test-image-2.jpg?dl=0',
]
def download_file(url, save_name):
url = url
if not os.path.exists(save_name):
file = requests.get(url)
open(save_name, 'wb').write(file.content)
for i, url in enumerate(file_urls):
download_file(
file_urls[i],
f"image_{i}.jpg"
)
model = torch.hub.load("ultralytics/yolov5", "custom", path="yolov5_0.65map_exp7_best.pt",
force_reload=False)
path = [['image_0.jpg'], ['image_1.jpg']]
def show_preds_image(image_path):
image = cv2.imread(image_path)
outputs = model.predict(source=image_path)
results = outputs[0].cpu().numpy()
for i, det in enumerate(results.boxes.xyxy):
cv2.rectangle(
image,
(int(det[0]), int(det[1])),
(int(det[2]), int(det[3])),
color=(0, 0, 255),
thickness=2,
lineType=cv2.LINE_AA
)
return cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
inputs_image = [
gr.components.Image(type="filepath", label="Input Image"),
]
outputs_image = [
gr.components.Image(type="numpy", label="Output Image"),
]
interface_image = gr.Interface(
fn=show_preds_image,
inputs=inputs_image,
outputs=outputs_image,
title="Pothole detector",
examples=path,
cache_examples=False,
)
interface_image.launch()