Spaces:
Running
Running
testing
Browse files
app.py
CHANGED
@@ -2,6 +2,7 @@ import gradio as gr
|
|
2 |
import cv2
|
3 |
import requests
|
4 |
import os
|
|
|
5 |
|
6 |
import torch
|
7 |
import ultralytics
|
@@ -14,36 +15,44 @@ model.conf = 0.20 # NMS confidence threshold
|
|
14 |
|
15 |
path = [['img/test-image.jpg'], ['img/test-image-2.jpg']]
|
16 |
|
17 |
-
def show_preds_image(image_path):
|
18 |
-
|
19 |
-
|
20 |
-
|
21 |
-
|
22 |
-
|
23 |
-
|
24 |
-
|
25 |
-
|
26 |
-
|
27 |
-
|
28 |
-
|
29 |
-
# for i, det in enumerate(results.boxes.xyxy):
|
30 |
-
# cv2.rectangle(
|
31 |
-
# image,
|
32 |
-
# (int(det[0]), int(det[1])),
|
33 |
-
# (int(det[2]), int(det[3])),
|
34 |
-
# color=(0, 0, 255),
|
35 |
-
# thickness=2,
|
36 |
-
# lineType=cv2.LINE_AA
|
37 |
-
# )
|
38 |
-
return results.show()
|
39 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
40 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
41 |
|
42 |
inputs_image = [
|
43 |
gr.components.Image(type="filepath", label="Input Image"),
|
44 |
]
|
45 |
outputs_image = [
|
46 |
-
gr.components.Image(type="
|
47 |
]
|
48 |
interface_image = gr.Interface(
|
49 |
fn=show_preds_image,
|
|
|
2 |
import cv2
|
3 |
import requests
|
4 |
import os
|
5 |
+
from PIL import Image
|
6 |
|
7 |
import torch
|
8 |
import ultralytics
|
|
|
15 |
|
16 |
path = [['img/test-image.jpg'], ['img/test-image-2.jpg']]
|
17 |
|
18 |
+
# def show_preds_image(image_path):
|
19 |
+
# image = cv2.imread(image_path)
|
20 |
+
# # outputs = model(source=image_path)
|
21 |
+
# # results = outputs[0].cpu().numpy()
|
22 |
+
# results = model(image_path)
|
23 |
+
# results.xyxy[0] # img1 predictions (tensor)
|
24 |
+
# results.pandas().xyxy[0] # img1 predictions (pandas)
|
25 |
+
# predictions = results.pred[0]
|
26 |
+
# boxes = predictions[:, :4] # x1, y1, x2, y2
|
27 |
+
# scores = predictions[:, 4]
|
28 |
+
# categories = predictions[:, 5]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
29 |
|
30 |
+
# # for i, det in enumerate(results.boxes.xyxy):
|
31 |
+
# # cv2.rectangle(
|
32 |
+
# # image,
|
33 |
+
# # (int(det[0]), int(det[1])),
|
34 |
+
# # (int(det[2]), int(det[3])),
|
35 |
+
# # color=(0, 0, 255),
|
36 |
+
# # thickness=2,
|
37 |
+
# # lineType=cv2.LINE_AA
|
38 |
+
# # )
|
39 |
+
# return results.show()
|
40 |
|
41 |
+
def show_preds_image(im, size=640):
|
42 |
+
g = (size / max(im.size)) # gain
|
43 |
+
im = im.resize((int(x * g) for x in im.size), Image.ANTIALIAS) # resize
|
44 |
+
|
45 |
+
results = model(im) # inference
|
46 |
+
results.render() # updates results.imgs with boxes and labels
|
47 |
+
results.save()
|
48 |
+
os.system("ls")
|
49 |
+
return "out.png"
|
50 |
|
51 |
inputs_image = [
|
52 |
gr.components.Image(type="filepath", label="Input Image"),
|
53 |
]
|
54 |
outputs_image = [
|
55 |
+
gr.components.Image(type="file", label="Output Image"),
|
56 |
]
|
57 |
interface_image = gr.Interface(
|
58 |
fn=show_preds_image,
|