jonas commited on
Commit
ae767c9
1 Parent(s): 3daea0f
Files changed (1) hide show
  1. app.py +22 -53
app.py CHANGED
@@ -5,70 +5,39 @@ import os
5
 
6
  import torch
7
  import ultralytics
8
- from ultralytics import YOLO
9
 
10
 
11
- # model = torch.hub.load("ultralytics/yolov5", "custom", path="yolov5_0.65map_exp7_best.pt",
12
- # force_reload=False)
13
 
14
- model = YOLO("yolov5_0.65map_exp7_best.pt")
15
  model.conf = 0.20 # NMS confidence threshold
16
 
17
  path = [['img/test-image.jpg'], ['img/test-image-2.jpg']]
18
 
19
- # def show_preds_image(image_path):
20
- # image = cv2.imread(image_path)
21
- # # outputs = model(source=image_path)
22
- # # results = outputs[0].cpu().numpy()
23
- # results = model(image_path)
24
- # results.xyxy[0] # img1 predictions (tensor)
25
- # results.numpy().xyxy[0] # img1 predictions (pandas)
26
- # predictions = results.pred[0]
27
- # for i, det in enumerate(results.boxes.xyxy):
28
- # cv2.rectangle(
29
- # image,
30
- # (int(det[0]), int(det[1])),
31
- # (int(det[2]), int(det[3])),
32
- # color=(0, 0, 255),
33
- # thickness=2,
34
- # lineType=cv2.LINE_AA
35
- # )
36
- # return cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
37
-
38
  def show_preds_image(image_path):
39
  image = cv2.imread(image_path)
40
- outputs = model.predict(source=image_path)
41
- results = outputs[0].cpu().numpy()
42
- for i, det in enumerate(results.boxes.xyxy):
43
- cv2.rectangle(
44
- image,
45
- (int(det[0]), int(det[1])),
46
- (int(det[2]), int(det[3])),
47
- color=(0, 0, 255),
48
- thickness=2,
49
- lineType=cv2.LINE_AA
50
- )
51
- return cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
52
-
53
- # def show_preds_image(image_path):
54
- # # perform inference
55
- # image_path = path
56
- # results = model(image_path, size=640)
57
- # # Results
58
- # results.print()
59
-
60
- # results.xyxy[0] # img1 predictions (tensor)
61
- # results.pandas().xyxy[0] # img1 predictions (pandas)
62
-
63
- # # parse results
64
- # predictions = results.pred[0]
65
- # boxes = predictions[:, :4] # x1, y1, x2, y2
66
- # scores = predictions[:, 4]
67
- # categories = predictions[:, 5]
68
 
69
- # return results.show()
70
 
71
-
72
 
73
  inputs_image = [
74
  gr.components.Image(type="filepath", label="Input Image"),
 
5
 
6
  import torch
7
  import ultralytics
 
8
 
9
 
10
+ model = torch.hub.load("ultralytics/yolov5", "custom", path="yolov5_0.65map_exp7_best.pt",
11
+ force_reload=False)
12
 
 
13
  model.conf = 0.20 # NMS confidence threshold
14
 
15
  path = [['img/test-image.jpg'], ['img/test-image-2.jpg']]
16
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
17
  def show_preds_image(image_path):
18
  image = cv2.imread(image_path)
19
+ # outputs = model(source=image_path)
20
+ # results = outputs[0].cpu().numpy()
21
+ results = model(image_path)
22
+ results.xyxy[0] # img1 predictions (tensor)
23
+ results.pandas().xyxy[0] # img1 predictions (pandas)
24
+ predictions = results.pred[0]
25
+ boxes = predictions[:, :4] # x1, y1, x2, y2
26
+ scores = predictions[:, 4]
27
+ categories = predictions[:, 5]
28
+
29
+ # for i, det in enumerate(results.boxes.xyxy):
30
+ # cv2.rectangle(
31
+ # image,
32
+ # (int(det[0]), int(det[1])),
33
+ # (int(det[2]), int(det[3])),
34
+ # color=(0, 0, 255),
35
+ # thickness=2,
36
+ # lineType=cv2.LINE_AA
37
+ # )
38
+ return results.show()
 
 
 
 
 
 
 
 
39
 
 
40
 
 
41
 
42
  inputs_image = [
43
  gr.components.Image(type="filepath", label="Input Image"),