jonas commited on
Commit
c8f842f
1 Parent(s): 96b8d80
Files changed (1) hide show
  1. app.py +29 -29
app.py CHANGED
@@ -13,38 +13,38 @@ model.conf = 0.20 # NMS confidence threshold
13
 
14
  path = [['img/test-image.jpg'], ['img/test-image-2.jpg']]
15
 
16
- # def show_preds_image(image_path):
17
- # image = cv2.imread(image_path)
18
- # outputs = model.predict(source=image_path)
19
- # results = outputs[0].cpu().numpy()
20
- # for i, det in enumerate(results.boxes.xyxy):
21
- # cv2.rectangle(
22
- # image,
23
- # (int(det[0]), int(det[1])),
24
- # (int(det[2]), int(det[3])),
25
- # color=(0, 0, 255),
26
- # thickness=2,
27
- # lineType=cv2.LINE_AA
28
- # )
29
- # return cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
30
-
31
  def show_preds_image(image_path):
32
- # perform inference
33
- image_path = path
34
- results = model(image_path, size=640)
35
- # Results
36
- results.print()
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
37
 
38
- results.xyxy[0] # img1 predictions (tensor)
39
- results.pandas().xyxy[0] # img1 predictions (pandas)
40
 
41
- # parse results
42
- predictions = results.pred[0]
43
- boxes = predictions[:, :4] # x1, y1, x2, y2
44
- scores = predictions[:, 4]
45
- categories = predictions[:, 5]
46
 
47
- return results.show()
48
 
49
 
50
 
@@ -58,7 +58,7 @@ interface_image = gr.Interface(
58
  fn=show_preds_image,
59
  inputs=inputs_image,
60
  outputs=outputs_image,
61
- title="Pothole detector",
62
  examples=path,
63
  cache_examples=False,
64
  )
 
13
 
14
  path = [['img/test-image.jpg'], ['img/test-image-2.jpg']]
15
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
16
  def show_preds_image(image_path):
17
+ image = cv2.imread(image_path)
18
+ outputs = model(source=image_path)
19
+ results = outputs[0].cpu().numpy()
20
+ for i, det in enumerate(results.boxes.xyxy):
21
+ cv2.rectangle(
22
+ image,
23
+ (int(det[0]), int(det[1])),
24
+ (int(det[2]), int(det[3])),
25
+ color=(0, 0, 255),
26
+ thickness=2,
27
+ lineType=cv2.LINE_AA
28
+ )
29
+ return cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
30
+
31
+ # def show_preds_image(image_path):
32
+ # # perform inference
33
+ # image_path = path
34
+ # results = model(image_path, size=640)
35
+ # # Results
36
+ # results.print()
37
 
38
+ # results.xyxy[0] # img1 predictions (tensor)
39
+ # results.pandas().xyxy[0] # img1 predictions (pandas)
40
 
41
+ # # parse results
42
+ # predictions = results.pred[0]
43
+ # boxes = predictions[:, :4] # x1, y1, x2, y2
44
+ # scores = predictions[:, 4]
45
+ # categories = predictions[:, 5]
46
 
47
+ # return results.show()
48
 
49
 
50
 
 
58
  fn=show_preds_image,
59
  inputs=inputs_image,
60
  outputs=outputs_image,
61
+ title="Cashew Disease Detection",
62
  examples=path,
63
  cache_examples=False,
64
  )