import gradio as gr import cv2 import requests import os import torch import ultralytics file_urls = [ 'https://www.dropbox.com/s/bc9r8n7919cbc77/test-image.jpg?dl=0', 'https://www.dropbox.com/s/fkmzgdm6okdzxdk/test-image-2.jpg?dl=0', ] def download_file(url, save_name): url = url if not os.path.exists(save_name): file = requests.get(url) open(save_name, 'wb').write(file.content) for i, url in enumerate(file_urls): download_file( file_urls[i], f"image_{i}.jpg" ) model = torch.hub.load("ultralytics/yolov5", "custom", path="yolov5_0.65map_exp7_best.pt", force_reload=False) path = [['image_0.jpg'], ['image_1.jpg']] def show_preds_image(image_path): image = cv2.imread(image_path) outputs = model.predict(source=image_path) results = outputs[0].cpu().numpy() for i, det in enumerate(results.boxes.xyxy): cv2.rectangle( image, (int(det[0]), int(det[1])), (int(det[2]), int(det[3])), color=(0, 0, 255), thickness=2, lineType=cv2.LINE_AA ) return cv2.cvtColor(image, cv2.COLOR_BGR2RGB) inputs_image = [ gr.components.Image(type="filepath", label="Input Image"), ] outputs_image = [ gr.components.Image(type="numpy", label="Output Image"), ] interface_image = gr.Interface( fn=show_preds_image, inputs=inputs_image, outputs=outputs_image, title="Pothole detector", examples=path, cache_examples=False, ) interface_image.launch()