import gradio as gr import cv2 import requests import os import torch import ultralytics model = torch.hub.load("ultralytics/yolov5", "custom", path="yolov5_0.65map_exp7_best.pt", force_reload=False) model.conf = 0.20 # NMS confidence threshold path = [['img/test-image.jpg'], ['img/test-image-2.jpg']] def show_preds_image(image_path): image = cv2.imread(image_path) outputs = model(source=image_path) results = outputs[0].cpu().numpy() for i, det in enumerate(results.boxes.xyxy): cv2.rectangle( image, (int(det[0]), int(det[1])), (int(det[2]), int(det[3])), color=(0, 0, 255), thickness=2, lineType=cv2.LINE_AA ) return cv2.cvtColor(image, cv2.COLOR_BGR2RGB) # def show_preds_image(image_path): # # perform inference # image_path = path # results = model(image_path, size=640) # # Results # results.print() # results.xyxy[0] # img1 predictions (tensor) # results.pandas().xyxy[0] # img1 predictions (pandas) # # parse results # predictions = results.pred[0] # boxes = predictions[:, :4] # x1, y1, x2, y2 # scores = predictions[:, 4] # categories = predictions[:, 5] # return results.show() inputs_image = [ gr.components.Image(type="filepath", label="Input Image"), ] outputs_image = [ gr.components.Image(type="numpy", label="Output Image"), ] interface_image = gr.Interface( fn=show_preds_image, inputs=inputs_image, outputs=outputs_image, title="Cashew Disease Detection", examples=path, cache_examples=False, ) interface_image.launch()