File size: 4,498 Bytes
b0aa389
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns
import numpy as np
from scipy.special import logit

df = pd.read_json("../results.json")

df = df[df["metric"] != "chrf"]
df = df.groupby(["task", "metric", "bcp_47"]).agg({"score": "mean"}).reset_index()

# Apply logit transformation to classification scores to reduce skewness
def transform_classification_scores(row):
    if row['task'] == 'classification':
        # Avoid division by zero and infinite values by clipping
        score = np.clip(row['score'], 0.001, 0.999)
        # Apply logit transformation (log(p/(1-p)))
        return logit(score)
    else:
        return row['score']

df['score'] = df.apply(transform_classification_scores, axis=1)

# Create a pivot table with tasks as columns and languages as rows
pivot_df = df.pivot_table(
    values='score', 
    index='bcp_47', 
    columns='task', 
    aggfunc='mean'
)

# Calculate correlation matrix
correlation_matrix = pivot_df.corr()

# Create the correlation plot
plt.figure(figsize=(12, 10))
# Create mask for upper triangle including diagonal to show only lower triangle  
mask = np.triu(np.ones_like(correlation_matrix, dtype=bool))

# Create a heatmap
sns.heatmap(
    correlation_matrix, 
    annot=True, 
    cmap='coolwarm', 
    center=0,
    square=True,
    mask=mask,
    cbar_kws={"shrink": .8},
    fmt='.3f'
)

plt.title('Task Performance Correlation Matrix', fontsize=16, fontweight='bold')
plt.xlabel('Tasks', fontsize=12)
plt.ylabel('Tasks', fontsize=12)
plt.xticks(rotation=45, ha='right')
plt.yticks(rotation=0)
plt.tight_layout()

# Save the plot
plt.savefig('task_correlation_matrix.png', dpi=300, bbox_inches='tight')
plt.show()

# Print correlation values for reference
print("Correlation Matrix:")
print("Note: Classification scores have been logit-transformed to reduce skewness")
print(correlation_matrix.round(3))

# Also create a scatter plot matrix for pairwise relationships with highlighted languages
highlighted_languages = ['en', 'zh', 'hi', 'es', 'ar']

# Create color mapping
def get_color_and_label(lang_code):
    if lang_code in highlighted_languages:
        color_map = {'en': 'red', 'zh': 'blue', 'hi': 'green', 'es': 'orange', 'ar': 'purple'}
        return color_map[lang_code], lang_code
    else:
        return 'lightgray', 'Other'

# Create custom scatter plot matrix
tasks = pivot_df.columns.tolist()
n_tasks = len(tasks)

fig, axes = plt.subplots(n_tasks, n_tasks, figsize=(15, 12))
fig.suptitle('Pairwise Task Performance (Highlighted Languages)', fontsize=16, fontweight='bold')

# Create legend elements
legend_elements = []
for lang in highlighted_languages:
    color, _ = get_color_and_label(lang)
    legend_elements.append(plt.Line2D([0], [0], marker='o', color='w', markerfacecolor=color, markersize=8, label=lang))
legend_elements.append(plt.Line2D([0], [0], marker='o', color='w', markerfacecolor='lightgray', markersize=8, label='Other'))

for i, task_y in enumerate(tasks):
    for j, task_x in enumerate(tasks):
        ax = axes[i, j]
        
        if i == j:
            # Diagonal: histogram
            task_data = pivot_df[task_y].dropna()
            colors = [get_color_and_label(lang)[0] for lang in task_data.index]
            ax.hist(task_data, bins=20, alpha=0.7, color='skyblue', edgecolor='black')
            ax.set_title(f'{task_y}', fontsize=10)
        else:
            # Off-diagonal: scatter plot
            for lang_code in pivot_df.index:
                if pd.notna(pivot_df.loc[lang_code, task_x]) and pd.notna(pivot_df.loc[lang_code, task_y]):
                    color, _ = get_color_and_label(lang_code)
                    alpha = 0.8 if lang_code in highlighted_languages else 0.3
                    size = 50 if lang_code in highlighted_languages else 20
                    ax.scatter(pivot_df.loc[lang_code, task_x], pivot_df.loc[lang_code, task_y], 
                             c=color, alpha=alpha, s=size)
        
        # Set labels
        if i == n_tasks - 1:
            ax.set_xlabel(task_x, fontsize=10)
        if j == 0:
            ax.set_ylabel(task_y, fontsize=10)
        
        # Remove tick labels except for edges
        if i != n_tasks - 1:
            ax.set_xticklabels([])
        if j != 0:
            ax.set_yticklabels([])

# Add legend
fig.legend(handles=legend_elements, loc='upper right', bbox_to_anchor=(1, 1))

plt.tight_layout()
plt.savefig('task_scatter_matrix.png', dpi=300, bbox_inches='tight')
plt.show()