File size: 14,423 Bytes
da6e1bc 731eddd 549360a f3a09a2 da6e1bc 731eddd 549360a a683732 b0aa389 98c6811 f3a09a2 da6e1bc 338dc9b eaf2d97 da6e1bc 731eddd da6e1bc f3a09a2 731eddd da6e1bc 731eddd f840423 2f9dee1 913253a da6e1bc 338dc9b f3a09a2 338dc9b f3a09a2 338dc9b 913253a da6e1bc 338dc9b da6e1bc 941d5c5 da6e1bc 731eddd da6e1bc 731eddd da6e1bc f840423 731eddd 2f9dee1 913253a 2f9dee1 da6e1bc 913253a da6e1bc 0384b92 da6e1bc 0384b92 913253a da6e1bc 0384b92 da6e1bc 0384b92 da6e1bc 0384b92 da6e1bc 913253a 0384b92 f840423 0384b92 da6e1bc 731eddd da6e1bc 0384b92 da6e1bc 2f9dee1 913253a 2f9dee1 da6e1bc 913253a da6e1bc 98c6811 b0aa389 47170a5 98c6811 ce2acb0 a683732 ce2acb0 a683732 b0aa389 a683732 b0aa389 260c1a3 913253a 260c1a3 98c6811 260c1a3 ce2acb0 731eddd 98c6811 b0aa389 98c6811 b0aa389 98c6811 b0aa389 98c6811 47170a5 549360a 98c6811 549360a da6e1bc a683732 2f9dee1 adc94d7 913253a adc94d7 b0aa389 98c6811 549360a adc94d7 2f9dee1 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 |
import random
from functools import partial
from textwrap import dedent
import evaluate
import pandas as pd
import sentencepiece as spm
from datasets_.flores import flores_sentences
from datasets_.mgsm import load_mgsm, parse_number
from datasets_.mmlu import load_mmlu
from datasets_.arc import load_uhura_arc_easy
from datasets_.truthfulqa import load_truthfulqa
from google.cloud import translate_v2 as translate
from langcodes import closest_supported_match
from languages import languages, script_name
from models import complete, transcribe, translate_google
bleu = evaluate.load("bleu")
chrf = evaluate.load("chrf")
wer = evaluate.load("wer")
tokenizer = spm.SentencePieceProcessor(
model_file="data/spbleu/flores200_sacrebleu_tokenizer_spm.model"
)
# sample languages to translate to
target_languages = languages[languages["in_benchmark"]].sample(
frac=1, weights="speakers", replace=True, random_state=42
)
translate_client = translate.Client()
supported_languages = [l["language"] for l in translate_client.get_languages()]
async def translate_and_evaluate(model, bcp_47, sentence_nr, mode="from"):
original_language = languages[languages["bcp_47"] == bcp_47].iloc[0]
target_language = target_languages.iloc[sentence_nr]
match mode:
case "from":
pass
case "to":
original_language, target_language = target_language, original_language
if (
flores_sentences(original_language) is None
or flores_sentences(target_language) is None
):
return []
original_sentence = flores_sentences(original_language)["text"][sentence_nr].strip()
target_sentence = flores_sentences(target_language)["text"][sentence_nr].strip()
script = script_name(target_language.flores_path.split("_")[1])
if model == "google/translate-v2":
original_language = closest_supported_match(
original_language, supported_languages
)
target_language = closest_supported_match(target_language, supported_languages)
if original_language == target_language:
prediction = original_sentence
elif original_language is None or target_language is None:
prediction = None
else:
prediction = await translate_google(
original_sentence, original_language.bcp_47, target_language.bcp_47
)
else:
prediction = await complete(
model=model,
messages=[
{
"role": "user",
"content": f"Translate the following text to the {target_language.language_name} language; use the {script} script; reply only with the translation:\n\n{original_sentence}",
}
],
temperature=0,
max_tokens=1024,
)
if prediction:
bleu_score = bleu.compute(
predictions=[prediction],
references=[target_sentence],
tokenizer=tokenizer.tokenize,
)
chrf_score = chrf.compute(
predictions=[prediction], references=[target_sentence]
)
else:
bleu_score = {"bleu": 0}
chrf_score = {"score": 0}
return [
{
"model": model,
"bcp_47": bcp_47,
"task": f"translation_{mode}",
"metric": metric,
"score": score,
"sentence_nr": sentence_nr,
}
for metric, score in (
("bleu", bleu_score["bleu"]),
("chrf", chrf_score["score"] / 100),
)
]
async def classify_and_evaluate(model, bcp_47, nr):
language = languages[languages["bcp_47"] == bcp_47].iloc[0]
sentences = flores_sentences(language)
if sentences is None:
return []
sentences = sentences.dropna(subset=["topic"])
sentences["topic"] = sentences["topic"].str.lower()
paragraphs = (
sentences.groupby("url").agg({"text": " ".join, "topic": "first"}).reset_index()
)
top_topics = paragraphs.value_counts("topic").head(5).index
paragraphs = paragraphs[paragraphs["topic"].isin(top_topics)]
examples = pd.concat(
[
paragraphs[paragraphs["topic"] == t].sample(n=1, random_state=42)
for t in top_topics
]
).sample(frac=1, random_state=nr)
test_paragraphs = paragraphs[~paragraphs["url"].isin(examples["url"])].sample(
frac=1, random_state=42
)
test_paragraph = test_paragraphs.iloc[nr]
def format_prompt(text):
return f"{text}\n\nTopic: {'|'.join(top_topics)}?"
messages = []
for example in examples.itertuples():
messages += [
{"role": "user", "content": format_prompt(example.text)},
{"role": "assistant", "content": example.topic},
]
# some models have poor tokenization for some languages, and the prompt for this task is relatively long, so it sometimes exceeds the context window
# this is not just to blame on the context window but mostly on the model's tokenization, so we assign 0 accuracy in this case
try:
pred = await complete(
model=model,
messages=[
*messages,
{
"role": "user",
"content": format_prompt(test_paragraph.text),
},
],
temperature=0,
max_tokens=30,
)
true = test_paragraph.topic
others = [t for t in top_topics if t != true]
acc = (
int(
pred.startswith(true)
or (true in pred and not any(o in pred for o in others))
)
if pred
else 0
)
except Exception as e:
if "`inputs` tokens + `max_new_tokens` must be <= 4097" in str(e):
print(f"Max tokens exceeded for {model} in {bcp_47}")
acc = 0
else:
raise e
return [
{
"model": model,
"bcp_47": bcp_47,
"task": "classification",
"metric": "accuracy",
"score": acc,
"sentence_nr": nr,
}
]
def corrupt_sentence(sentence):
# replace 5% of the sentence with <mask>
mask_length = round(len(sentence) * 0.05)
start = random.randint(0, len(sentence) - mask_length)
end = start + mask_length
return sentence[:start] + "<mask>" + sentence[end:]
async def mlm_and_evaluate(model, language_bcp_47, nr):
language = languages[languages["bcp_47"] == language_bcp_47].iloc[0]
sentences = flores_sentences(language)
if sentences is None:
return []
sentences = pd.DataFrame(sentences, columns=["text"])
sentences["corrupt_text"] = sentences["text"].apply(corrupt_sentence)
examples = sentences.sample(n=10, random_state=42)
test_sentences = sentences[~sentences["text"].isin(examples["text"])].sample(
frac=1, random_state=42
)
test_sentence = test_sentences.iloc[nr]
messages = []
for example in examples.itertuples():
messages += [
{"role": "user", "content": example.corrupt_text},
{"role": "assistant", "content": example.text},
]
prediction = await complete(
model=model,
messages=[
*messages,
{
"role": "user",
"content": test_sentence.corrupt_text,
},
],
temperature=0,
max_tokens=1024,
)
chrf_score = chrf.compute(predictions=[prediction], references=[test_sentence.text])
return [
{
"model": model,
"bcp_47": language["bcp_47"],
"task": "language_modeling",
"metric": "chrf",
"score": chrf_score["score"] / 100,
"sentence_nr": nr,
}
]
def format_multiple_choice(item):
return f"""{item["question"]}
A: {item["choices"][0]}
B: {item["choices"][1]}
C: {item["choices"][2]}
D: {item["choices"][3]}
A|B|C|D?"""
async def mmlu_and_evaluate(model, language_bcp_47, nr):
ds_name, examples, task = load_mmlu(language_bcp_47, nr)
if not task:
return []
messages = []
for example in examples:
messages += [
{"role": "user", "content": format_multiple_choice(example)},
{"role": "assistant", "content": example["answer"]},
]
messages += [{"role": "user", "content": format_multiple_choice(task)}]
try:
response = await complete(
model=model,
messages=messages,
temperature=0,
max_tokens=1,
)
if response:
acc = int(response[:1].strip() == task["answer"])
else:
acc = 0
except Exception as e:
if "ResponsibleAIPolicyViolation" in str(e):
acc = 0
else:
raise e
return [
{
"model": model,
"bcp_47": language_bcp_47,
"task": "mmlu",
"metric": "accuracy",
"score": acc,
"sentence_nr": nr,
}
]
async def arc_and_evaluate(model, language_bcp_47, nr):
ds_name, examples, task = load_uhura_arc_easy(language_bcp_47, nr)
if not task:
return []
messages = []
for example in examples:
messages += [
{"role": "user", "content": format_multiple_choice(example)},
{"role": "assistant", "content": example["answer"]},
]
messages += [{"role": "user", "content": format_multiple_choice(task)}]
try:
response = await complete(
model=model,
messages=messages,
temperature=0,
max_tokens=1,
)
if response:
acc = int(response[:1].strip() == task["answer"])
else:
acc = 0
except Exception as e:
if "ResponsibleAIPolicyViolation" in str(e):
acc = 0
else:
raise e
return [
{
"model": model,
"bcp_47": language_bcp_47,
"task": "arc",
"metric": "accuracy",
"score": acc,
"sentence_nr": nr,
}
]
letters = "ABCDEFGHIJKLMNOPQRSTUVWXYZ"
def shuffle_choices_and_labels(item):
indices = list(range(len(item["choices"])))
random.shuffle(indices)
item["choices"] = [item["choices"][i] for i in indices]
item["labels"] = [item["labels"][i] for i in indices]
return item
def format_multiple_choice_truthfulqa(item):
text = item["question"] + "\n\n"
for i, choice in enumerate(item["choices"]):
text += f"{letters[i]}: {choice}\n"
text += "|".join(letters[: len(item["choices"])]) + "?"
return text
async def truthfulqa_and_evaluate(model, language_bcp_47, nr):
ds_name, examples, task = load_truthfulqa(language_bcp_47, nr)
if not task:
return []
task = shuffle_choices_and_labels(task)
answer = letters[task["labels"].index(1)]
messages = []
for example in examples:
example = shuffle_choices_and_labels(example)
messages += [
{"role": "user", "content": format_multiple_choice_truthfulqa(example)},
{"role": "assistant", "content": letters[example["labels"].index(1)]},
]
messages += [{"role": "user", "content": format_multiple_choice_truthfulqa(task)}]
try:
response = await complete(
model=model,
messages=messages,
temperature=0,
max_tokens=1,
)
if response:
acc = int(response[:1].strip() == answer)
else:
acc = 0
except Exception as e:
if "ResponsibleAIPolicyViolation" in str(e):
acc = 0
else:
raise e
return [
{
"model": model,
"bcp_47": language_bcp_47,
"task": "truthfulqa",
"metric": "accuracy",
"score": acc,
"sentence_nr": nr,
}
]
async def mgsm_and_evaluate(model, language_bcp_47, nr):
system_prompt = """
Solve the math problem. Use reasoning, and finally give the answer as a number.
Response format: <reasoning> #### <number>
"""
system_prompt = dedent(system_prompt).strip()
ds_slug, question = load_mgsm(language_bcp_47, nr)
if not question:
return []
response = await complete(
model=model,
messages=[
{"role": "system", "content": system_prompt},
{"role": "user", "content": question["question"]},
],
temperature=0,
max_tokens=1024,
)
if response and len(response.split("####")) == 2:
number = response.split("####")[1].strip()
accuracy = int(parse_number(number) == parse_number(question["answer_number"]))
else:
accuracy = 0
return [
{
"model": model,
"bcp_47": language_bcp_47,
"task": "mgsm",
"metric": "accuracy",
"score": accuracy,
"sentence_nr": nr,
}
]
async def transcribe_and_evaluate(model, language_bcp_47, nr):
language = languages[languages["bcp_47"] == language_bcp_47].iloc[0]
fleurs = pd.read_csv(
f"data/fleurs/{language.fleurs_tag}/dev.tsv",
sep="\t",
names=[
"id",
"fname",
"raw_transcription",
"transcription",
"words",
"id2",
"gender",
],
)
item = fleurs.iloc[nr]
path = f"data/fleurs/{language.fleurs_tag}/audio/dev/{item.fname}"
pred = await transcribe(path, model=model)
wer_score = wer.compute(predictions=[pred], references=[item.transcription])
return [
{
"model": model,
"bcp_47": language["bcp_47"],
"task": "asr",
"metric": "wer",
"score": wer_score,
"sentence_nr": nr,
}
]
tasks = {
"translation_from": partial(translate_and_evaluate, mode="from"),
"translation_to": partial(translate_and_evaluate, mode="to"),
"classification": classify_and_evaluate,
# "mlm": mlm_and_evaluate,
"mmlu": mmlu_and_evaluate,
"arc": arc_and_evaluate,
"truthfulqa": truthfulqa_and_evaluate,
"mgsm": mgsm_and_evaluate,
# "asr": transcribe_and_evaluate,
}
|