Spaces:
Runtime error
Runtime error
Add application file
Browse files
app.py
ADDED
@@ -0,0 +1,29 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import streamlit as st
|
2 |
+
from transformers import AutoTokenizer, AutoModelForSequenceClassification
|
3 |
+
import torch
|
4 |
+
|
5 |
+
# Load the model and tokenizer from Hugging Face
|
6 |
+
model_name = "fajjos/keyword_variable_detection_v1"
|
7 |
+
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
8 |
+
model = AutoModelForSequenceClassification.from_pretrained(model_name)
|
9 |
+
|
10 |
+
# Streamlit UI
|
11 |
+
st.title("Keyword and Variable Extraction")
|
12 |
+
st.write("Instruction: Extract keywords and variables from the prompt.")
|
13 |
+
|
14 |
+
# Input for user text
|
15 |
+
user_input = st.text_area("Input Text", "University of Oxford timeshigher ranking")
|
16 |
+
|
17 |
+
if st.button("Predict"):
|
18 |
+
# Tokenize the input
|
19 |
+
inputs = tokenizer(user_input, return_tensors="pt")
|
20 |
+
|
21 |
+
# Run inference
|
22 |
+
with torch.no_grad():
|
23 |
+
outputs = model(**inputs)
|
24 |
+
|
25 |
+
# Process the outputs
|
26 |
+
predictions = torch.nn.functional.softmax(outputs.logits, dim=-1)
|
27 |
+
predicted_class = predictions.argmax().item()
|
28 |
+
|
29 |
+
st.write(f"Predicted class: {predicted_class}, Confidence: {predictions[0][predicted_class]:.2f}")
|