Spaces:
Sleeping
Sleeping
Add Streamlit app and requirements
Browse files- app.py +39 -24
- requirements.txt +2 -0
app.py
CHANGED
|
@@ -1,34 +1,49 @@
|
|
| 1 |
import streamlit as st
|
| 2 |
-
from transformers import
|
| 3 |
import torch
|
|
|
|
| 4 |
|
| 5 |
-
# Load the
|
| 6 |
-
model_name = "
|
| 7 |
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
| 8 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 9 |
|
| 10 |
# Streamlit interface
|
| 11 |
-
st.title("Keyword Extractor")
|
|
|
|
|
|
|
| 12 |
user_input = st.text_area("Enter text for keyword extraction")
|
| 13 |
|
| 14 |
if user_input:
|
| 15 |
-
#
|
| 16 |
-
|
| 17 |
-
|
| 18 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 19 |
with torch.no_grad():
|
| 20 |
-
|
| 21 |
-
|
| 22 |
-
#
|
| 23 |
-
|
| 24 |
-
|
| 25 |
-
|
| 26 |
-
|
| 27 |
-
st.write(
|
| 28 |
-
for token, pred in zip(tokens, predictions[0]):
|
| 29 |
-
if pred == 1: # Assuming label '1' corresponds to a keyword
|
| 30 |
-
st.write(token)
|
| 31 |
-
|
| 32 |
-
# # Add a slider for interaction (example)
|
| 33 |
-
# x = st.slider('Select a value')
|
| 34 |
-
# st.write(f"{x} squared is {x * x}")
|
|
|
|
| 1 |
import streamlit as st
|
| 2 |
+
from transformers import AutoTokenizer, AutoModelForCausalLM, TextStreamer
|
| 3 |
import torch
|
| 4 |
+
import bitsandbytes as bnb # Required for 4-bit quantization
|
| 5 |
|
| 6 |
+
# Load the tokenizer and the quantized LLaMA model
|
| 7 |
+
model_name = "unsloth/Llama-3.2-1B-Instruct-bnb-4bit"
|
| 8 |
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
| 9 |
+
|
| 10 |
+
# Load the quantized LLaMA model in 4-bit precision
|
| 11 |
+
model = AutoModelForCausalLM.from_pretrained(
|
| 12 |
+
model_name,
|
| 13 |
+
load_in_4bit=True, # Enable 4-bit quantization
|
| 14 |
+
device_map="auto" # Automatically assigns to CPU/GPU
|
| 15 |
+
)
|
| 16 |
+
|
| 17 |
+
# Enable native 2x faster inference (if applicable, ensure this feature works)
|
| 18 |
+
# FastLanguageModel.for_inference(model) # Uncomment this if FastLanguageModel is available for your model
|
| 19 |
|
| 20 |
# Streamlit interface
|
| 21 |
+
st.title("Keyword Extractor using LLaMA 4-bit Model")
|
| 22 |
+
|
| 23 |
+
# Text input area for user input
|
| 24 |
user_input = st.text_area("Enter text for keyword extraction")
|
| 25 |
|
| 26 |
if user_input:
|
| 27 |
+
# Prepare the prompt for keyword extraction
|
| 28 |
+
prompt_template = (
|
| 29 |
+
"Extract keywords and variables from the prompt:\n"
|
| 30 |
+
"{}\n"
|
| 31 |
+
)
|
| 32 |
+
alpaca_prompt = prompt_template.format(user_input)
|
| 33 |
+
|
| 34 |
+
# Tokenize the input text
|
| 35 |
+
inputs = tokenizer([alpaca_prompt], return_tensors="pt").to("cuda")
|
| 36 |
+
|
| 37 |
+
# Set up the text streamer to display the generated text as it streams
|
| 38 |
+
text_streamer = TextStreamer(tokenizer)
|
| 39 |
+
|
| 40 |
+
# Generate keywords and extract variables
|
| 41 |
with torch.no_grad():
|
| 42 |
+
output = model.generate(**inputs, streamer=text_streamer, max_new_tokens=128)
|
| 43 |
+
|
| 44 |
+
# Decode the output tokens to get the generated text
|
| 45 |
+
generated_text = tokenizer.decode(output[0], skip_special_tokens=True)
|
| 46 |
+
|
| 47 |
+
# Display the result in the Streamlit app
|
| 48 |
+
st.write("Extracted Keywords and Variables:")
|
| 49 |
+
st.write(generated_text)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
requirements.txt
CHANGED
|
@@ -1,3 +1,5 @@
|
|
| 1 |
transformers
|
|
|
|
|
|
|
| 2 |
torch
|
| 3 |
streamlit
|
|
|
|
| 1 |
transformers
|
| 2 |
+
bitsandbytes
|
| 3 |
+
sentencepiece
|
| 4 |
torch
|
| 5 |
streamlit
|