Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,78 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import streamlit as st
|
3 |
+
from transformers import AutoModelForSeq2SeqLM, AutoTokenizer
|
4 |
+
from PyPDF2 import PdfReader
|
5 |
+
import torch
|
6 |
+
from typing import List
|
7 |
+
|
8 |
+
# Load the model and tokenizer from Hugging Face
|
9 |
+
model_name = "fajjos/pdf_model" # Replace with your model name
|
10 |
+
model = AutoModelForSeq2SeqLM.from_pretrained(model_name)
|
11 |
+
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
12 |
+
|
13 |
+
# Function to extract text from a single PDF
|
14 |
+
def extract_text_from_pdf(pdf_file: str) -> str:
|
15 |
+
"""
|
16 |
+
Extracts text from a single PDF file using PyPDF2.
|
17 |
+
"""
|
18 |
+
pdf_reader = PdfReader(pdf_file)
|
19 |
+
text = ""
|
20 |
+
for page in pdf_reader.pages:
|
21 |
+
text += page.extract_text()
|
22 |
+
return text
|
23 |
+
|
24 |
+
# Function to search for a keyword in the extracted PDF texts
|
25 |
+
def search_keyword_in_pdfs(keyword: str, pdf_texts: dict) -> List[str]:
|
26 |
+
"""
|
27 |
+
Search for the keyword in the uploaded PDFs and return the list of PDF names.
|
28 |
+
"""
|
29 |
+
found_pdfs = []
|
30 |
+
for pdf_name, pdf_text in pdf_texts.items():
|
31 |
+
prompt = f"Does the keyword '{keyword}' appear in the following text? If yes, provide details.\n\n{pdf_text}"
|
32 |
+
inputs = tokenizer(prompt, return_tensors="pt").to("cuda")
|
33 |
+
outputs = model.generate(inputs.input_ids, max_new_tokens=20000)
|
34 |
+
response = tokenizer.decode(outputs[0], skip_special_tokens=True)
|
35 |
+
|
36 |
+
# If keyword is found in the response
|
37 |
+
if keyword.lower() in response.lower():
|
38 |
+
found_pdfs.append(pdf_name)
|
39 |
+
return found_pdfs
|
40 |
+
|
41 |
+
# Function to process all PDFs in a specified folder
|
42 |
+
def process_pdfs_in_folder(folder_path: str) -> dict:
|
43 |
+
"""
|
44 |
+
Extracts text from all PDFs in the specified folder and stores it in a dictionary.
|
45 |
+
"""
|
46 |
+
pdf_texts = {}
|
47 |
+
for file_name in os.listdir(folder_path):
|
48 |
+
if file_name.endswith(".pdf"): # Check if the file is a PDF
|
49 |
+
file_path = os.path.join(folder_path, file_name)
|
50 |
+
pdf_texts[file_name] = extract_text_from_pdf(file_path)
|
51 |
+
return pdf_texts
|
52 |
+
|
53 |
+
# Streamlit UI for folder path and keyword input
|
54 |
+
st.title("PDF Keyword Search")
|
55 |
+
|
56 |
+
folder_path = st.text_input("Enter the folder path containing PDFs:").strip()
|
57 |
+
keyword = st.text_input("Enter the keyword to search for:")
|
58 |
+
|
59 |
+
if st.button("Search"):
|
60 |
+
if not folder_path or not keyword:
|
61 |
+
st.error("Please provide both the folder path and the keyword.")
|
62 |
+
else:
|
63 |
+
try:
|
64 |
+
# Process all PDFs in the folder
|
65 |
+
pdf_texts = process_pdfs_in_folder(folder_path)
|
66 |
+
|
67 |
+
# Perform keyword search in the extracted texts
|
68 |
+
found_pdfs = search_keyword_in_pdfs(keyword, pdf_texts)
|
69 |
+
|
70 |
+
# Display results
|
71 |
+
if found_pdfs:
|
72 |
+
st.write(f"The keyword '{keyword}' was found in the following PDF files:")
|
73 |
+
for pdf in found_pdfs:
|
74 |
+
st.write(f"- {pdf}")
|
75 |
+
else:
|
76 |
+
st.write(f"The keyword '{keyword}' was not found in any PDFs in the folder '{folder_path}'.")
|
77 |
+
except Exception as e:
|
78 |
+
st.error(f"Error: {e}")
|