import gradio as gr import requests from PIL import Image from transformers import BlipProcessor, BlipForConditionalGeneration import time processor = BlipProcessor.from_pretrained("Salesforce/blip-image-captioning-large") model = BlipForConditionalGeneration.from_pretrained("Salesforce/blip-image-captioning-large") def caption(img,min_len,max_len): raw_image =Image.open(img).convert('RGB') inputs =processor(raw_image,return_tensors="pt") out = model.generate(**inputs, min_length=min_len, max_length=max_len) return processor.decode(out[0],skip_special_tokens=True) def greet(img, min_len,max_len): start = time.time() result=caption(img,min_len,max_len) end =time.time() total_time =str(end - start) result=result+'n'+total_time +'seconds' return result iface = gr.Interface(fn=greet, title='Blip Image Captioning Large', description=" [Salesforce/blip-image-captioning-largel(https: //huggingface,co/Salesforce/blip-image-captioning-large)", inputs=[gr.Image(type='filepath', label='Image'), gr.Slider(label='Minimum Length', minimum=1, maximum=1000, value=30)], outputs=gr.Textbox(label='Caption'), theme = gr.themes.Base(primary_hue="teal",secondary_hue="teal",neutral_hue="slate")) iface.launch(server_port=23765, share=True)