vinesmsuic
commited on
Commit
·
26378e3
1
Parent(s):
15186bb
update
Browse files- app.py +182 -191
- gradio_demo.py +182 -191
app.py
CHANGED
@@ -30,7 +30,7 @@ import imageio
|
|
30 |
DEBUG_MODE = False
|
31 |
|
32 |
demo_examples = [
|
33 |
-
["./demo/Man Walking.mp4", "./demo/Man Walking/edited_first_frame/turn the man into darth vader.png", "
|
34 |
["./demo/A kitten turning its head on a wooden floor.mp4", "./demo/A kitten turning its head on a wooden floor/edited_first_frame/A dog turning its head on a wooden floor.png", "A dog turning its head on a wooden floor", 0.2, 0.2, 0.5],
|
35 |
["./demo/An Old Man Doing Exercises For The Body And Mind.mp4", "./demo/An Old Man Doing Exercises For The Body And Mind/edited_first_frame/jack ma.png", "a man doing exercises for the body and mind", 0.8, 0.8, 1.0],
|
36 |
["./demo/Ballet.mp4", "./demo/Ballet/edited_first_frame/van gogh style.png", "girl dancing ballet, in the style of van gogh", 1.0, 1.0, 1.0],
|
@@ -39,198 +39,189 @@ demo_examples = [
|
|
39 |
|
40 |
TEMP_DIR = "_demo_temp"
|
41 |
|
42 |
-
class ImageEditor:
|
43 |
-
def __init__(self) -> None:
|
44 |
-
self.image_edit_model = InstructPix2Pix()
|
45 |
|
46 |
-
|
47 |
-
|
48 |
-
|
49 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
50 |
video_path,
|
51 |
-
|
52 |
-
|
53 |
-
|
54 |
-
|
55 |
-
|
56 |
-
|
57 |
-
|
58 |
-
|
59 |
-
|
60 |
-
|
61 |
-
|
62 |
-
|
63 |
-
|
64 |
-
|
65 |
-
|
66 |
-
|
67 |
-
|
68 |
-
|
69 |
-
|
70 |
-
|
71 |
-
|
72 |
-
|
73 |
-
|
74 |
-
|
75 |
-
|
76 |
-
|
77 |
-
|
78 |
-
|
79 |
-
|
80 |
-
|
81 |
-
|
82 |
-
|
83 |
-
|
84 |
-
|
85 |
-
|
86 |
-
|
87 |
-
|
88 |
-
|
89 |
-
|
90 |
-
|
91 |
-
|
92 |
-
|
93 |
-
|
94 |
-
|
95 |
-
|
96 |
-
|
97 |
-
|
98 |
-
|
99 |
-
|
100 |
-
|
101 |
-
|
102 |
-
|
103 |
-
|
104 |
-
|
105 |
-
|
106 |
-
|
107 |
-
|
108 |
-
|
109 |
-
|
110 |
-
|
111 |
-
|
112 |
-
|
113 |
-
|
114 |
-
|
115 |
-
|
116 |
-
|
117 |
-
|
118 |
-
|
119 |
-
|
120 |
-
|
121 |
-
|
122 |
-
|
123 |
-
|
124 |
-
|
125 |
-
|
126 |
-
|
127 |
-
|
128 |
-
|
129 |
-
|
130 |
-
|
131 |
-
|
132 |
-
|
133 |
-
|
134 |
-
|
135 |
-
|
136 |
-
|
137 |
-
|
138 |
-
|
139 |
-
|
140 |
-
|
141 |
-
|
142 |
-
|
143 |
-
|
144 |
-
|
145 |
-
|
146 |
-
|
147 |
-
|
148 |
-
|
149 |
-
|
150 |
-
|
151 |
-
|
152 |
-
|
153 |
-
|
154 |
-
|
155 |
-
|
156 |
-
|
157 |
-
|
158 |
-
|
159 |
-
|
160 |
-
|
161 |
-
|
162 |
-
|
163 |
-
|
164 |
-
|
165 |
-
|
166 |
-
|
167 |
-
|
168 |
-
|
169 |
-
|
170 |
-
|
171 |
-
|
172 |
-
|
173 |
-
|
174 |
-
|
175 |
-
random_latents * self.config.pnp_config.random_ratio
|
176 |
-
+ ddim_latents_at_t * (1 - self.config.pnp_config.random_ratio)
|
177 |
-
)
|
178 |
-
|
179 |
-
# Init Pnp
|
180 |
-
self.config.pnp_config.n_steps = num_inference_steps
|
181 |
-
self.config.pnp_config.pnp_f_t = conv_inj
|
182 |
-
self.config.pnp_config.pnp_spatial_attn_t = spatial_inj
|
183 |
-
self.config.pnp_config.pnp_temp_attn_t = temp_inj
|
184 |
-
self.config.pnp_config.ddim_init_latents_t_idx = ddim_init_latents_t_idx
|
185 |
-
init_pnp(self.pipe, self.ddim_scheduler, self.config.pnp_config)
|
186 |
-
# Edit video
|
187 |
-
self.pipe.register_modules(scheduler=self.ddim_scheduler)
|
188 |
-
|
189 |
-
edited_video = self.pipe.sample_with_pnp(
|
190 |
-
prompt=video_prompt,
|
191 |
-
image=edited_1st_frame,
|
192 |
-
height=self.config.inverse_config.image_size[1],
|
193 |
-
width=self.config.inverse_config.image_size[0],
|
194 |
-
num_frames=self.config.inverse_config.n_frames,
|
195 |
-
num_inference_steps=self.config.pnp_config.n_steps,
|
196 |
-
guidance_scale=guidance_scale,
|
197 |
-
negative_prompt=video_negative_prompt,
|
198 |
-
target_fps=self.config.pnp_config.target_fps,
|
199 |
-
latents=mixed_latents,
|
200 |
-
generator=generator,
|
201 |
-
return_dict=True,
|
202 |
-
ddim_init_latents_t_idx=ddim_init_latents_t_idx,
|
203 |
-
ddim_inv_latents_path=ddim_latents_path,
|
204 |
-
ddim_inv_prompt=self.config.inverse_config.ddim_inv_prompt,
|
205 |
-
ddim_inv_1st_frame=first_frame,
|
206 |
-
).frames[0]
|
207 |
-
|
208 |
-
edited_video = [
|
209 |
-
frame.resize(self.config.inverse_config.image_size, resample=Image.LANCZOS)
|
210 |
-
for frame in edited_video
|
211 |
-
]
|
212 |
-
|
213 |
-
def images_to_video(images, output_path, fps=24):
|
214 |
-
writer = imageio.get_writer(output_path, fps=fps)
|
215 |
-
|
216 |
-
for img in images:
|
217 |
-
img_np = np.array(img)
|
218 |
-
writer.append_data(img_np)
|
219 |
-
|
220 |
-
writer.close()
|
221 |
-
output_path = os.path.join(tmp_dir, "edited_video.mp4")
|
222 |
-
images_to_video(
|
223 |
-
edited_video, output_path, fps=self.config.pnp_config.target_fps
|
224 |
-
)
|
225 |
-
return output_path
|
226 |
-
|
227 |
-
|
228 |
-
# Init the class
|
229 |
-
#=====================================
|
230 |
-
if not DEBUG_MODE:
|
231 |
-
Image_Editor = ImageEditor()
|
232 |
-
AnyV2V_Editor = AnyV2V_I2VGenXL()
|
233 |
-
#=====================================
|
234 |
|
235 |
def btn_preprocess_video_fn(video_path, width, height, start_time, end_time, center_crop, x_offset, y_offset, longest_to_width):
|
236 |
def check_video(video_path):
|
|
|
30 |
DEBUG_MODE = False
|
31 |
|
32 |
demo_examples = [
|
33 |
+
["./demo/Man Walking.mp4", "./demo/Man Walking/edited_first_frame/turn the man into darth vader.png", "man walking", 0.1, 0.1, 1.0],
|
34 |
["./demo/A kitten turning its head on a wooden floor.mp4", "./demo/A kitten turning its head on a wooden floor/edited_first_frame/A dog turning its head on a wooden floor.png", "A dog turning its head on a wooden floor", 0.2, 0.2, 0.5],
|
35 |
["./demo/An Old Man Doing Exercises For The Body And Mind.mp4", "./demo/An Old Man Doing Exercises For The Body And Mind/edited_first_frame/jack ma.png", "a man doing exercises for the body and mind", 0.8, 0.8, 1.0],
|
36 |
["./demo/Ballet.mp4", "./demo/Ballet/edited_first_frame/van gogh style.png", "girl dancing ballet, in the style of van gogh", 1.0, 1.0, 1.0],
|
|
|
39 |
|
40 |
TEMP_DIR = "_demo_temp"
|
41 |
|
|
|
|
|
|
|
42 |
|
43 |
+
image_edit_model = InstructPix2Pix()
|
44 |
+
|
45 |
+
@torch.no_grad()
|
46 |
+
@spaces.GPU(duration=30)
|
47 |
+
def perform_edit(video_path, prompt, force_512=False, seed=42, negative_prompt=""):
|
48 |
+
edited_image_path = infer_video(image_edit_model,
|
49 |
+
video_path,
|
50 |
+
output_dir=TEMP_DIR,
|
51 |
+
prompt=prompt,
|
52 |
+
prompt_type="instruct",
|
53 |
+
force_512=force_512,
|
54 |
+
seed=seed,
|
55 |
+
negative_prompt=negative_prompt,
|
56 |
+
overwrite=True)
|
57 |
+
return edited_image_path
|
58 |
+
|
59 |
+
|
60 |
+
# Set up default inversion config file
|
61 |
+
config = {
|
62 |
+
# DDIM inversion
|
63 |
+
"inverse_config": {
|
64 |
+
"image_size": [512, 512],
|
65 |
+
"n_frames": 16,
|
66 |
+
"cfg": 1.0,
|
67 |
+
"target_fps": 8,
|
68 |
+
"ddim_inv_prompt": "",
|
69 |
+
"prompt": "",
|
70 |
+
"negative_prompt": "",
|
71 |
+
},
|
72 |
+
"pnp_config": {
|
73 |
+
"random_ratio": 0.0,
|
74 |
+
"target_fps": 8,
|
75 |
+
},
|
76 |
+
}
|
77 |
+
config = OmegaConf.create(config)
|
78 |
+
|
79 |
+
# Initialize the I2VGenXL pipeline
|
80 |
+
pipe = I2VGenXLPipeline.from_pretrained(
|
81 |
+
"ali-vilab/i2vgen-xl",
|
82 |
+
torch_dtype=torch.float16,
|
83 |
+
variant="fp16",
|
84 |
+
).to("cuda:0")
|
85 |
+
|
86 |
+
# Initialize the DDIM inverse scheduler
|
87 |
+
inverse_scheduler = DDIMInverseScheduler.from_pretrained(
|
88 |
+
"ali-vilab/i2vgen-xl",
|
89 |
+
subfolder="scheduler",
|
90 |
+
)
|
91 |
+
# Initialize the DDIM scheduler
|
92 |
+
ddim_scheduler = DDIMScheduler.from_pretrained(
|
93 |
+
"ali-vilab/i2vgen-xl",
|
94 |
+
subfolder="scheduler",
|
95 |
+
)
|
96 |
+
|
97 |
+
@torch.no_grad()
|
98 |
+
@spaces.GPU(duration=150)
|
99 |
+
def perform_anyv2v(
|
100 |
video_path,
|
101 |
+
video_prompt,
|
102 |
+
video_negative_prompt,
|
103 |
+
edited_first_frame_path,
|
104 |
+
conv_inj,
|
105 |
+
spatial_inj,
|
106 |
+
temp_inj,
|
107 |
+
num_inference_steps,
|
108 |
+
guidance_scale,
|
109 |
+
ddim_init_latents_t_idx,
|
110 |
+
ddim_inversion_steps,
|
111 |
+
seed,
|
112 |
+
):
|
113 |
+
|
114 |
+
tmp_dir = os.path.join(TEMP_DIR, "AnyV2V")
|
115 |
+
if os.path.exists(tmp_dir):
|
116 |
+
shutil.rmtree(tmp_dir)
|
117 |
+
os.makedirs(tmp_dir)
|
118 |
+
|
119 |
+
ddim_latents_path = os.path.join(tmp_dir, "ddim_latents")
|
120 |
+
|
121 |
+
def read_frames(video_path):
|
122 |
+
frames = []
|
123 |
+
with imageio.get_reader(video_path) as reader:
|
124 |
+
for i, frame in enumerate(reader):
|
125 |
+
pil_image = Image.fromarray(frame)
|
126 |
+
frames.append(pil_image)
|
127 |
+
return frames
|
128 |
+
frame_list = read_frames(str(video_path))
|
129 |
+
|
130 |
+
config.inverse_config.image_size = list(frame_list[0].size)
|
131 |
+
config.inverse_config.n_steps = ddim_inversion_steps
|
132 |
+
config.inverse_config.n_frames = len(frame_list)
|
133 |
+
config.inverse_config.output_dir = ddim_latents_path
|
134 |
+
ddim_init_latents_t_idx = min(ddim_init_latents_t_idx, num_inference_steps - 1)
|
135 |
+
|
136 |
+
# Step 1. DDIM Inversion
|
137 |
+
first_frame = frame_list[0]
|
138 |
+
|
139 |
+
generator = torch.Generator(device="cuda:0")
|
140 |
+
generator = generator.manual_seed(seed)
|
141 |
+
_ddim_latents = ddim_inversion(
|
142 |
+
config.inverse_config,
|
143 |
+
first_frame,
|
144 |
+
frame_list,
|
145 |
+
pipe,
|
146 |
+
inverse_scheduler,
|
147 |
+
generator,
|
148 |
+
)
|
149 |
+
|
150 |
+
# Step 2. DDIM Sampling + PnP feature and attention injection
|
151 |
+
# Load the edited first frame
|
152 |
+
edited_1st_frame = load_image(edited_first_frame_path).resize(
|
153 |
+
config.inverse_config.image_size, resample=Image.Resampling.LANCZOS
|
154 |
+
)
|
155 |
+
# Load the initial latents at t
|
156 |
+
ddim_scheduler.set_timesteps(num_inference_steps)
|
157 |
+
print(f"ddim_scheduler.timesteps: {ddim_scheduler.timesteps}")
|
158 |
+
ddim_latents_at_t = load_ddim_latents_at_t(
|
159 |
+
ddim_scheduler.timesteps[ddim_init_latents_t_idx],
|
160 |
+
ddim_latents_path=ddim_latents_path,
|
161 |
+
)
|
162 |
+
print(
|
163 |
+
f"ddim_scheduler.timesteps[t_idx]: {ddim_scheduler.timesteps[ddim_init_latents_t_idx]}"
|
164 |
+
)
|
165 |
+
print(f"ddim_latents_at_t.shape: {ddim_latents_at_t.shape}")
|
166 |
+
|
167 |
+
# Blend the latents
|
168 |
+
random_latents = torch.randn_like(ddim_latents_at_t)
|
169 |
+
print(
|
170 |
+
f"Blending random_ratio (1 means random latent): {config.pnp_config.random_ratio}"
|
171 |
+
)
|
172 |
+
mixed_latents = (
|
173 |
+
random_latents * config.pnp_config.random_ratio
|
174 |
+
+ ddim_latents_at_t * (1 - config.pnp_config.random_ratio)
|
175 |
+
)
|
176 |
+
|
177 |
+
# Init Pnp
|
178 |
+
config.pnp_config.n_steps = num_inference_steps
|
179 |
+
config.pnp_config.pnp_f_t = conv_inj
|
180 |
+
config.pnp_config.pnp_spatial_attn_t = spatial_inj
|
181 |
+
config.pnp_config.pnp_temp_attn_t = temp_inj
|
182 |
+
config.pnp_config.ddim_init_latents_t_idx = ddim_init_latents_t_idx
|
183 |
+
init_pnp(pipe, ddim_scheduler, config.pnp_config)
|
184 |
+
# Edit video
|
185 |
+
pipe.register_modules(scheduler=ddim_scheduler)
|
186 |
+
|
187 |
+
edited_video = pipe.sample_with_pnp(
|
188 |
+
prompt=video_prompt,
|
189 |
+
image=edited_1st_frame,
|
190 |
+
height=config.inverse_config.image_size[1],
|
191 |
+
width=config.inverse_config.image_size[0],
|
192 |
+
num_frames=config.inverse_config.n_frames,
|
193 |
+
num_inference_steps=config.pnp_config.n_steps,
|
194 |
+
guidance_scale=guidance_scale,
|
195 |
+
negative_prompt=video_negative_prompt,
|
196 |
+
target_fps=config.pnp_config.target_fps,
|
197 |
+
latents=mixed_latents,
|
198 |
+
generator=generator,
|
199 |
+
return_dict=True,
|
200 |
+
ddim_init_latents_t_idx=ddim_init_latents_t_idx,
|
201 |
+
ddim_inv_latents_path=ddim_latents_path,
|
202 |
+
ddim_inv_prompt=config.inverse_config.ddim_inv_prompt,
|
203 |
+
ddim_inv_1st_frame=first_frame,
|
204 |
+
).frames[0]
|
205 |
+
|
206 |
+
edited_video = [
|
207 |
+
frame.resize(config.inverse_config.image_size, resample=Image.LANCZOS)
|
208 |
+
for frame in edited_video
|
209 |
+
]
|
210 |
+
|
211 |
+
def images_to_video(images, output_path, fps=24):
|
212 |
+
writer = imageio.get_writer(output_path, fps=fps)
|
213 |
+
|
214 |
+
for img in images:
|
215 |
+
img_np = np.array(img)
|
216 |
+
writer.append_data(img_np)
|
217 |
+
|
218 |
+
writer.close()
|
219 |
+
output_path = os.path.join(tmp_dir, "edited_video.mp4")
|
220 |
+
images_to_video(
|
221 |
+
edited_video, output_path, fps=config.pnp_config.target_fps
|
222 |
+
)
|
223 |
+
return output_path
|
224 |
+
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
225 |
|
226 |
def btn_preprocess_video_fn(video_path, width, height, start_time, end_time, center_crop, x_offset, y_offset, longest_to_width):
|
227 |
def check_video(video_path):
|
gradio_demo.py
CHANGED
@@ -30,7 +30,7 @@ import imageio
|
|
30 |
DEBUG_MODE = False
|
31 |
|
32 |
demo_examples = [
|
33 |
-
["./demo/Man Walking.mp4", "./demo/Man Walking/edited_first_frame/turn the man into darth vader.png", "
|
34 |
["./demo/A kitten turning its head on a wooden floor.mp4", "./demo/A kitten turning its head on a wooden floor/edited_first_frame/A dog turning its head on a wooden floor.png", "A dog turning its head on a wooden floor", 0.2, 0.2, 0.5],
|
35 |
["./demo/An Old Man Doing Exercises For The Body And Mind.mp4", "./demo/An Old Man Doing Exercises For The Body And Mind/edited_first_frame/jack ma.png", "a man doing exercises for the body and mind", 0.8, 0.8, 1.0],
|
36 |
["./demo/Ballet.mp4", "./demo/Ballet/edited_first_frame/van gogh style.png", "girl dancing ballet, in the style of van gogh", 1.0, 1.0, 1.0],
|
@@ -39,198 +39,189 @@ demo_examples = [
|
|
39 |
|
40 |
TEMP_DIR = "_demo_temp"
|
41 |
|
42 |
-
class ImageEditor:
|
43 |
-
def __init__(self) -> None:
|
44 |
-
self.image_edit_model = InstructPix2Pix()
|
45 |
|
46 |
-
|
47 |
-
|
48 |
-
|
49 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
50 |
video_path,
|
51 |
-
|
52 |
-
|
53 |
-
|
54 |
-
|
55 |
-
|
56 |
-
|
57 |
-
|
58 |
-
|
59 |
-
|
60 |
-
|
61 |
-
|
62 |
-
|
63 |
-
|
64 |
-
|
65 |
-
|
66 |
-
|
67 |
-
|
68 |
-
|
69 |
-
|
70 |
-
|
71 |
-
|
72 |
-
|
73 |
-
|
74 |
-
|
75 |
-
|
76 |
-
|
77 |
-
|
78 |
-
|
79 |
-
|
80 |
-
|
81 |
-
|
82 |
-
|
83 |
-
|
84 |
-
|
85 |
-
|
86 |
-
|
87 |
-
|
88 |
-
|
89 |
-
|
90 |
-
|
91 |
-
|
92 |
-
|
93 |
-
|
94 |
-
|
95 |
-
|
96 |
-
|
97 |
-
|
98 |
-
|
99 |
-
|
100 |
-
|
101 |
-
|
102 |
-
|
103 |
-
|
104 |
-
|
105 |
-
|
106 |
-
|
107 |
-
|
108 |
-
|
109 |
-
|
110 |
-
|
111 |
-
|
112 |
-
|
113 |
-
|
114 |
-
|
115 |
-
|
116 |
-
|
117 |
-
|
118 |
-
|
119 |
-
|
120 |
-
|
121 |
-
|
122 |
-
|
123 |
-
|
124 |
-
|
125 |
-
|
126 |
-
|
127 |
-
|
128 |
-
|
129 |
-
|
130 |
-
|
131 |
-
|
132 |
-
|
133 |
-
|
134 |
-
|
135 |
-
|
136 |
-
|
137 |
-
|
138 |
-
|
139 |
-
|
140 |
-
|
141 |
-
|
142 |
-
|
143 |
-
|
144 |
-
|
145 |
-
|
146 |
-
|
147 |
-
|
148 |
-
|
149 |
-
|
150 |
-
|
151 |
-
|
152 |
-
|
153 |
-
|
154 |
-
|
155 |
-
|
156 |
-
|
157 |
-
|
158 |
-
|
159 |
-
|
160 |
-
|
161 |
-
|
162 |
-
|
163 |
-
|
164 |
-
|
165 |
-
|
166 |
-
|
167 |
-
|
168 |
-
|
169 |
-
|
170 |
-
|
171 |
-
|
172 |
-
|
173 |
-
|
174 |
-
|
175 |
-
random_latents * self.config.pnp_config.random_ratio
|
176 |
-
+ ddim_latents_at_t * (1 - self.config.pnp_config.random_ratio)
|
177 |
-
)
|
178 |
-
|
179 |
-
# Init Pnp
|
180 |
-
self.config.pnp_config.n_steps = num_inference_steps
|
181 |
-
self.config.pnp_config.pnp_f_t = conv_inj
|
182 |
-
self.config.pnp_config.pnp_spatial_attn_t = spatial_inj
|
183 |
-
self.config.pnp_config.pnp_temp_attn_t = temp_inj
|
184 |
-
self.config.pnp_config.ddim_init_latents_t_idx = ddim_init_latents_t_idx
|
185 |
-
init_pnp(self.pipe, self.ddim_scheduler, self.config.pnp_config)
|
186 |
-
# Edit video
|
187 |
-
self.pipe.register_modules(scheduler=self.ddim_scheduler)
|
188 |
-
|
189 |
-
edited_video = self.pipe.sample_with_pnp(
|
190 |
-
prompt=video_prompt,
|
191 |
-
image=edited_1st_frame,
|
192 |
-
height=self.config.inverse_config.image_size[1],
|
193 |
-
width=self.config.inverse_config.image_size[0],
|
194 |
-
num_frames=self.config.inverse_config.n_frames,
|
195 |
-
num_inference_steps=self.config.pnp_config.n_steps,
|
196 |
-
guidance_scale=guidance_scale,
|
197 |
-
negative_prompt=video_negative_prompt,
|
198 |
-
target_fps=self.config.pnp_config.target_fps,
|
199 |
-
latents=mixed_latents,
|
200 |
-
generator=generator,
|
201 |
-
return_dict=True,
|
202 |
-
ddim_init_latents_t_idx=ddim_init_latents_t_idx,
|
203 |
-
ddim_inv_latents_path=ddim_latents_path,
|
204 |
-
ddim_inv_prompt=self.config.inverse_config.ddim_inv_prompt,
|
205 |
-
ddim_inv_1st_frame=first_frame,
|
206 |
-
).frames[0]
|
207 |
-
|
208 |
-
edited_video = [
|
209 |
-
frame.resize(self.config.inverse_config.image_size, resample=Image.LANCZOS)
|
210 |
-
for frame in edited_video
|
211 |
-
]
|
212 |
-
|
213 |
-
def images_to_video(images, output_path, fps=24):
|
214 |
-
writer = imageio.get_writer(output_path, fps=fps)
|
215 |
-
|
216 |
-
for img in images:
|
217 |
-
img_np = np.array(img)
|
218 |
-
writer.append_data(img_np)
|
219 |
-
|
220 |
-
writer.close()
|
221 |
-
output_path = os.path.join(tmp_dir, "edited_video.mp4")
|
222 |
-
images_to_video(
|
223 |
-
edited_video, output_path, fps=self.config.pnp_config.target_fps
|
224 |
-
)
|
225 |
-
return output_path
|
226 |
-
|
227 |
-
|
228 |
-
# Init the class
|
229 |
-
#=====================================
|
230 |
-
if not DEBUG_MODE:
|
231 |
-
Image_Editor = ImageEditor()
|
232 |
-
AnyV2V_Editor = AnyV2V_I2VGenXL()
|
233 |
-
#=====================================
|
234 |
|
235 |
def btn_preprocess_video_fn(video_path, width, height, start_time, end_time, center_crop, x_offset, y_offset, longest_to_width):
|
236 |
def check_video(video_path):
|
|
|
30 |
DEBUG_MODE = False
|
31 |
|
32 |
demo_examples = [
|
33 |
+
["./demo/Man Walking.mp4", "./demo/Man Walking/edited_first_frame/turn the man into darth vader.png", "man walking", 0.1, 0.1, 1.0],
|
34 |
["./demo/A kitten turning its head on a wooden floor.mp4", "./demo/A kitten turning its head on a wooden floor/edited_first_frame/A dog turning its head on a wooden floor.png", "A dog turning its head on a wooden floor", 0.2, 0.2, 0.5],
|
35 |
["./demo/An Old Man Doing Exercises For The Body And Mind.mp4", "./demo/An Old Man Doing Exercises For The Body And Mind/edited_first_frame/jack ma.png", "a man doing exercises for the body and mind", 0.8, 0.8, 1.0],
|
36 |
["./demo/Ballet.mp4", "./demo/Ballet/edited_first_frame/van gogh style.png", "girl dancing ballet, in the style of van gogh", 1.0, 1.0, 1.0],
|
|
|
39 |
|
40 |
TEMP_DIR = "_demo_temp"
|
41 |
|
|
|
|
|
|
|
42 |
|
43 |
+
image_edit_model = InstructPix2Pix()
|
44 |
+
|
45 |
+
@torch.no_grad()
|
46 |
+
@spaces.GPU(duration=30)
|
47 |
+
def perform_edit(video_path, prompt, force_512=False, seed=42, negative_prompt=""):
|
48 |
+
edited_image_path = infer_video(image_edit_model,
|
49 |
+
video_path,
|
50 |
+
output_dir=TEMP_DIR,
|
51 |
+
prompt=prompt,
|
52 |
+
prompt_type="instruct",
|
53 |
+
force_512=force_512,
|
54 |
+
seed=seed,
|
55 |
+
negative_prompt=negative_prompt,
|
56 |
+
overwrite=True)
|
57 |
+
return edited_image_path
|
58 |
+
|
59 |
+
|
60 |
+
# Set up default inversion config file
|
61 |
+
config = {
|
62 |
+
# DDIM inversion
|
63 |
+
"inverse_config": {
|
64 |
+
"image_size": [512, 512],
|
65 |
+
"n_frames": 16,
|
66 |
+
"cfg": 1.0,
|
67 |
+
"target_fps": 8,
|
68 |
+
"ddim_inv_prompt": "",
|
69 |
+
"prompt": "",
|
70 |
+
"negative_prompt": "",
|
71 |
+
},
|
72 |
+
"pnp_config": {
|
73 |
+
"random_ratio": 0.0,
|
74 |
+
"target_fps": 8,
|
75 |
+
},
|
76 |
+
}
|
77 |
+
config = OmegaConf.create(config)
|
78 |
+
|
79 |
+
# Initialize the I2VGenXL pipeline
|
80 |
+
pipe = I2VGenXLPipeline.from_pretrained(
|
81 |
+
"ali-vilab/i2vgen-xl",
|
82 |
+
torch_dtype=torch.float16,
|
83 |
+
variant="fp16",
|
84 |
+
).to("cuda:0")
|
85 |
+
|
86 |
+
# Initialize the DDIM inverse scheduler
|
87 |
+
inverse_scheduler = DDIMInverseScheduler.from_pretrained(
|
88 |
+
"ali-vilab/i2vgen-xl",
|
89 |
+
subfolder="scheduler",
|
90 |
+
)
|
91 |
+
# Initialize the DDIM scheduler
|
92 |
+
ddim_scheduler = DDIMScheduler.from_pretrained(
|
93 |
+
"ali-vilab/i2vgen-xl",
|
94 |
+
subfolder="scheduler",
|
95 |
+
)
|
96 |
+
|
97 |
+
@torch.no_grad()
|
98 |
+
@spaces.GPU(duration=150)
|
99 |
+
def perform_anyv2v(
|
100 |
video_path,
|
101 |
+
video_prompt,
|
102 |
+
video_negative_prompt,
|
103 |
+
edited_first_frame_path,
|
104 |
+
conv_inj,
|
105 |
+
spatial_inj,
|
106 |
+
temp_inj,
|
107 |
+
num_inference_steps,
|
108 |
+
guidance_scale,
|
109 |
+
ddim_init_latents_t_idx,
|
110 |
+
ddim_inversion_steps,
|
111 |
+
seed,
|
112 |
+
):
|
113 |
+
|
114 |
+
tmp_dir = os.path.join(TEMP_DIR, "AnyV2V")
|
115 |
+
if os.path.exists(tmp_dir):
|
116 |
+
shutil.rmtree(tmp_dir)
|
117 |
+
os.makedirs(tmp_dir)
|
118 |
+
|
119 |
+
ddim_latents_path = os.path.join(tmp_dir, "ddim_latents")
|
120 |
+
|
121 |
+
def read_frames(video_path):
|
122 |
+
frames = []
|
123 |
+
with imageio.get_reader(video_path) as reader:
|
124 |
+
for i, frame in enumerate(reader):
|
125 |
+
pil_image = Image.fromarray(frame)
|
126 |
+
frames.append(pil_image)
|
127 |
+
return frames
|
128 |
+
frame_list = read_frames(str(video_path))
|
129 |
+
|
130 |
+
config.inverse_config.image_size = list(frame_list[0].size)
|
131 |
+
config.inverse_config.n_steps = ddim_inversion_steps
|
132 |
+
config.inverse_config.n_frames = len(frame_list)
|
133 |
+
config.inverse_config.output_dir = ddim_latents_path
|
134 |
+
ddim_init_latents_t_idx = min(ddim_init_latents_t_idx, num_inference_steps - 1)
|
135 |
+
|
136 |
+
# Step 1. DDIM Inversion
|
137 |
+
first_frame = frame_list[0]
|
138 |
+
|
139 |
+
generator = torch.Generator(device="cuda:0")
|
140 |
+
generator = generator.manual_seed(seed)
|
141 |
+
_ddim_latents = ddim_inversion(
|
142 |
+
config.inverse_config,
|
143 |
+
first_frame,
|
144 |
+
frame_list,
|
145 |
+
pipe,
|
146 |
+
inverse_scheduler,
|
147 |
+
generator,
|
148 |
+
)
|
149 |
+
|
150 |
+
# Step 2. DDIM Sampling + PnP feature and attention injection
|
151 |
+
# Load the edited first frame
|
152 |
+
edited_1st_frame = load_image(edited_first_frame_path).resize(
|
153 |
+
config.inverse_config.image_size, resample=Image.Resampling.LANCZOS
|
154 |
+
)
|
155 |
+
# Load the initial latents at t
|
156 |
+
ddim_scheduler.set_timesteps(num_inference_steps)
|
157 |
+
print(f"ddim_scheduler.timesteps: {ddim_scheduler.timesteps}")
|
158 |
+
ddim_latents_at_t = load_ddim_latents_at_t(
|
159 |
+
ddim_scheduler.timesteps[ddim_init_latents_t_idx],
|
160 |
+
ddim_latents_path=ddim_latents_path,
|
161 |
+
)
|
162 |
+
print(
|
163 |
+
f"ddim_scheduler.timesteps[t_idx]: {ddim_scheduler.timesteps[ddim_init_latents_t_idx]}"
|
164 |
+
)
|
165 |
+
print(f"ddim_latents_at_t.shape: {ddim_latents_at_t.shape}")
|
166 |
+
|
167 |
+
# Blend the latents
|
168 |
+
random_latents = torch.randn_like(ddim_latents_at_t)
|
169 |
+
print(
|
170 |
+
f"Blending random_ratio (1 means random latent): {config.pnp_config.random_ratio}"
|
171 |
+
)
|
172 |
+
mixed_latents = (
|
173 |
+
random_latents * config.pnp_config.random_ratio
|
174 |
+
+ ddim_latents_at_t * (1 - config.pnp_config.random_ratio)
|
175 |
+
)
|
176 |
+
|
177 |
+
# Init Pnp
|
178 |
+
config.pnp_config.n_steps = num_inference_steps
|
179 |
+
config.pnp_config.pnp_f_t = conv_inj
|
180 |
+
config.pnp_config.pnp_spatial_attn_t = spatial_inj
|
181 |
+
config.pnp_config.pnp_temp_attn_t = temp_inj
|
182 |
+
config.pnp_config.ddim_init_latents_t_idx = ddim_init_latents_t_idx
|
183 |
+
init_pnp(pipe, ddim_scheduler, config.pnp_config)
|
184 |
+
# Edit video
|
185 |
+
pipe.register_modules(scheduler=ddim_scheduler)
|
186 |
+
|
187 |
+
edited_video = pipe.sample_with_pnp(
|
188 |
+
prompt=video_prompt,
|
189 |
+
image=edited_1st_frame,
|
190 |
+
height=config.inverse_config.image_size[1],
|
191 |
+
width=config.inverse_config.image_size[0],
|
192 |
+
num_frames=config.inverse_config.n_frames,
|
193 |
+
num_inference_steps=config.pnp_config.n_steps,
|
194 |
+
guidance_scale=guidance_scale,
|
195 |
+
negative_prompt=video_negative_prompt,
|
196 |
+
target_fps=config.pnp_config.target_fps,
|
197 |
+
latents=mixed_latents,
|
198 |
+
generator=generator,
|
199 |
+
return_dict=True,
|
200 |
+
ddim_init_latents_t_idx=ddim_init_latents_t_idx,
|
201 |
+
ddim_inv_latents_path=ddim_latents_path,
|
202 |
+
ddim_inv_prompt=config.inverse_config.ddim_inv_prompt,
|
203 |
+
ddim_inv_1st_frame=first_frame,
|
204 |
+
).frames[0]
|
205 |
+
|
206 |
+
edited_video = [
|
207 |
+
frame.resize(config.inverse_config.image_size, resample=Image.LANCZOS)
|
208 |
+
for frame in edited_video
|
209 |
+
]
|
210 |
+
|
211 |
+
def images_to_video(images, output_path, fps=24):
|
212 |
+
writer = imageio.get_writer(output_path, fps=fps)
|
213 |
+
|
214 |
+
for img in images:
|
215 |
+
img_np = np.array(img)
|
216 |
+
writer.append_data(img_np)
|
217 |
+
|
218 |
+
writer.close()
|
219 |
+
output_path = os.path.join(tmp_dir, "edited_video.mp4")
|
220 |
+
images_to_video(
|
221 |
+
edited_video, output_path, fps=config.pnp_config.target_fps
|
222 |
+
)
|
223 |
+
return output_path
|
224 |
+
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
225 |
|
226 |
def btn_preprocess_video_fn(video_path, width, height, start_time, end_time, center_crop, x_offset, y_offset, longest_to_width):
|
227 |
def check_video(video_path):
|