from huggingface_hub import hf_hub_download import torch import PIL class CosXLEdit(): """ Edit Cos Stable Diffusion XL 1.0 Base is tuned to use a Cosine-Continuous EDM VPred schedule, and then upgraded to perform instructed image editing. Reference: https://huggingface.co/stabilityai/cosxl """ def __init__(self, device="cuda"): """ Attributes: pipe (CosStableDiffusionXLInstructPix2PixPipeline): The InstructPix2Pix pipeline for image transformation. Args: device (str, optional): Device on which the pipeline runs. Defaults to "cuda". """ from diffusers import EDMEulerScheduler from .cosxl.custom_pipeline import CosStableDiffusionXLInstructPix2PixPipeline from .cosxl.utils import set_timesteps_patched EDMEulerScheduler.set_timesteps = set_timesteps_patched #edit_file = hf_hub_download(repo_id="stabilityai/cosxl", filename="cosxl_edit.safetensors") edit_file_path = "./black_box_image_edit/cosxl/cosxl_edit.safetensors" self.pipe = CosStableDiffusionXLInstructPix2PixPipeline.from_single_file( edit_file_path, num_in_channels=8 ) self.pipe.scheduler = EDMEulerScheduler(sigma_min=0.002, sigma_max=120.0, sigma_data=1.0, prediction_type="v_prediction") self.pipe.to(device) self.pipe.enable_vae_tiling() self.pipe.enable_model_cpu_offload() def infer_one_image(self, src_image: PIL.Image.Image = None, src_prompt: str = None, target_prompt: str = None, instruct_prompt: str = None, seed: int = 42, negative_prompt=""): """ Modifies the source image based on the provided instruction prompt. Args: src_image (PIL.Image.Image): Source image in RGB format. instruct_prompt (str): Caption for editing the image. seed (int, optional): Seed for random generator. Defaults to 42. Returns: PIL.Image.Image: The transformed image. """ src_image = src_image.convert('RGB') # force it to RGB format generator = torch.manual_seed(seed) resolution = 1024 preprocessed_image = src_image.resize((resolution, resolution)) image = self.pipe(prompt=instruct_prompt, image=preprocessed_image, height=resolution, width=resolution, negative_prompt=negative_prompt, guidance_scale=7, num_inference_steps=20, generator=generator).images[0] image = image.resize((src_image.width, src_image.height)) return image