Spaces:
Running
on
Zero
Running
on
Zero
File size: 3,422 Bytes
2af7c18 eaa76b7 2af7c18 b766640 2af7c18 eaa76b7 2af7c18 8097377 2af7c18 882b96e 2af7c18 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 |
import gradio as gr
import numpy as np
import torch
import spaces
from diffusers import FluxPipeline, FluxTransformer2DModel
from PIL import Image
from diffusers.utils import export_to_gif
import uuid
import random
device = "cuda" if torch.cuda.is_available() else "cpu"
if torch.cuda.is_available():
torch_dtype = torch.bfloat16
else:
torch_dtype = torch.float32
def split_image(input_image, num_splits=4):
# Create a list to store the output images
output_images = []
# Split the image into four 256x256 sections
for i in range(num_splits):
left = i * 256
right = (i + 1) * 256
box = (left, 0, right, 256)
output_images.append(input_image.crop(box))
return output_images
pipe = FluxPipeline.from_pretrained(
"black-forest-labs/FLUX.1-schnell",
torch_dtype=torch_dtype
)
pipe.to(device)
MAX_SEED = np.iinfo(np.int32).max
@spaces.GPU
def infer(prompt, seed, randomize_seed, num_inference_steps, progress=gr.Progress(track_tqdm=True)):
prompt_template = f"A side by side 4 frame image showing consecutive stills from a looped gif moving from left to right. The gif is {prompt}"
if randomize_seed:
seed = random.randint(0, MAX_SEED)
generator = torch.Generator().manual_seed(seed)
image = pipe(
prompt=prompt,
num_inference_steps=num_inference_steps,
num_images_per_prompt=1,
generator=torch.Generator(device).manual_seed(seed),
height=height,
width=width
).images[0]
gif_name = f"{uuid.uuid4().hex}-flux.gif"
export_to_gif(split_image(image, 4), gif_name, fps=4)
return gif_name, seed
examples = [
"Astronaut in a jungle, cold color palette, muted colors, detailed, 8k",
"An astronaut riding a green horse",
"A delicious ceviche cheesecake slice",
]
css="""
#col-container {
margin: 0 auto;
max-width: 640px;
}
"""
with gr.Blocks(css=css) as demo:
with gr.Column(elem_id="col-container"):
gr.Markdown(f"""
# FLUX.1 Schnell Animations
Generate gifs with
""")
with gr.Row():
prompt = gr.Text(
label="Prompt",
show_label=False,
max_lines=1,
placeholder="Enter your prompt",
container=False,
)
run_button = gr.Button("Run", scale=0)
result = gr.Image(label="Result", show_label=False)
with gr.Accordion("Advanced Settings", open=False):
seed = gr.Slider(
label="Seed",
minimum=0,
maximum=MAX_SEED,
step=1,
value=0,
)
randomize_seed = gr.Checkbox(label="Randomize seed", value=True)
num_inference_steps = gr.Slider(
label="Number of inference steps",
minimum=1,
maximum=12,
step=1,
value=4,
)
gr.Examples(
examples = examples,
inputs = [prompt]
)
gr.on(
triggers=[run_button.click, prompt.submit],
fn = infer,
inputs = [prompt, seed, randomize_seed, num_inference_steps],
outputs = [result, seed]
)
demo.queue().launch() |