File size: 9,476 Bytes
2af7c18
eaa76b7
2af7c18
 
 
5c5e329
6f6d790
2af7c18
 
b766640
2af7c18
 
 
 
 
 
 
 
2c08108
2af7c18
406065d
cf21a37
 
 
406065d
cf21a37
2af7c18
eaa76b7
 
2c08108
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2af7c18
365bdd8
 
2a602ea
2c08108
2af7c18
 
d47ea1e
2a602ea
 
2af7c18
365bdd8
2a602ea
365bdd8
 
2a602ea
 
 
 
 
365bdd8
 
 
 
 
2a602ea
 
 
 
 
 
365bdd8
2a602ea
 
 
 
365bdd8
5c5e329
365bdd8
2af7c18
2c08108
365bdd8
5c5e329
2a602ea
 
 
 
 
365bdd8
2a602ea
 
 
 
 
 
 
 
 
 
 
 
 
 
1c85335
2af7c18
e525d7c
 
 
 
 
 
 
 
 
 
2af7c18
 
69cab2c
2c08108
49a1eca
2c08108
 
49a1eca
 
2c08108
49a1eca
 
 
 
82172b4
50f5a42
49a1eca
82172b4
2c08108
49a1eca
82172b4
2c08108
49a1eca
82172b4
2c08108
49a1eca
2c08108
 
49a1eca
2c08108
 
49a1eca
2c08108
49a1eca
 
e525d7c
365bdd8
e525d7c
 
 
365bdd8
 
 
e525d7c
365bdd8
e525d7c
 
365bdd8
e525d7c
 
365bdd8
e525d7c
365bdd8
e525d7c
 
365bdd8
 
 
 
 
 
 
 
 
 
 
 
e525d7c
67ae5ad
b8af109
f857cb7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1c85335
50ded98
 
 
 
 
 
 
 
 
 
f857cb7
2af7c18
1c85335
 
 
 
 
 
 
 
 
 
2af7c18
67ae5ad
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1c85335
2af7c18
 
 
 
 
 
 
 
 
 
1c85335
 
cf21a37
1c85335
cf21a37
2af7c18
cf21a37
 
 
 
 
4218146
cf21a37
 
 
 
2af7c18
8097377
1c85335
 
 
2af7c18
cf21a37
d47ea1e
 
 
 
 
d92e171
d47ea1e
 
2af7c18
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
import gradio as gr
import numpy as np
import torch
import spaces
from diffusers import FluxPipeline, FluxTransformer2DModel
from diffusers.utils import export_to_gif
from huggingface_hub import hf_hub_download
from PIL import Image
import uuid
import random

device = "cuda" if torch.cuda.is_available() else "cpu"

if torch.cuda.is_available():
    torch_dtype = torch.bfloat16
else:
    torch_dtype = torch.float32



# νŒŒμ΄ν”„λΌμΈ μ΄ˆκΈ°ν™” μˆ˜μ •
pipe = FluxPipeline.from_pretrained(
    "black-forest-labs/FLUX.1-dev", 
    torch_dtype=torch_dtype,
    use_safetensors=True
).to(device)

MAX_SEED = np.iinfo(np.int32).max

def split_image(input_image, num_splits=8):
    width = input_image.width
    height = input_image.height
    split_width = width // num_splits
    output_images = []
    
    for i in range(num_splits):
        left = i * split_width
        right = (i + 1) * split_width
        box = (left, 0, right, height)
        split = input_image.crop(box)
        # 이미지 ν’ˆμ§ˆ κ°œμ„ μ„ μœ„ν•œ 처리
        split = split.convert('RGB')
        output_images.append(split)
    
    return output_images

@spaces.GPU 
def infer(prompt, seed=1, randomize_seed=False, num_inference_steps=20, progress=gr.Progress(track_tqdm=True)):
    progress(0, desc="Starting...")
    prompt_template = f"A single clear frame of {prompt}. The scene should show only one moment of the action, high quality, detailed, centered composition."
    
    if randomize_seed:
        seed = random.randint(0, MAX_SEED)
    
    frames = []
    total_frames = 8
    
    # 진행 상황을 더 μ„Έλ°€ν•˜κ²Œ ν‘œμ‹œ
    for i in range(total_frames):
        current_progress = (i / total_frames) * 0.8
        progress(current_progress, desc=f"🎨 Generating frame {i+1}/{total_frames}")
        frame_prompt = f"{prompt_template} Frame {i+1} of sequence."
        
        frame_seed = seed + i
        generator = torch.Generator().manual_seed(frame_seed)
        
        # 각 ν”„λ ˆμž„μ˜ 생성 단계도 ν‘œμ‹œ
        for step in range(num_inference_steps):
            step_progress = current_progress + (step / num_inference_steps) * (0.8 / total_frames)
            progress(step_progress, desc=f"Frame {i+1}/{total_frames} - Step {step+1}/{num_inference_steps}")
        
        frame = pipe(
            prompt=frame_prompt,
            num_inference_steps=num_inference_steps,
            num_images_per_prompt=1,
            generator=generator,
            height=320,
            width=320,
            guidance_scale=7.5,
        ).images[0]
        
        frames.append(frame)
        progress((i + 1) / total_frames * 0.8, desc=f"βœ… Completed frame {i+1}/{total_frames}")
    
    progress(0.9, desc="🎬 Creating GIF...")
    gif_name = f"{uuid.uuid4().hex}-flux.gif"
    
    export_to_gif(frames, gif_name, fps=8)
    
    total_width = 320 * total_frames
    preview_image = Image.new('RGB', (total_width, 320))
    for i, frame in enumerate(frames):
        preview_image.paste(frame, (i * 320, 0))
    
    progress(1.0, desc="✨ Done!")
    return gif_name, preview_image, seed

def create_preview_image(frames):
    """ν”„λ ˆμž„λ“€μ„ κ°€λ‘œλ‘œ μ—°κ²°ν•˜μ—¬ 미리보기 이미지 생성"""
    total_width = sum(frame.width for frame in frames)
    max_height = max(frame.height for frame in frames)
    
    preview = Image.new('RGB', (total_width, max_height))
    x_offset = 0
    for frame in frames:
        preview.paste(frame, (x_offset, 0))
        x_offset += frame.width
    
    return preview

examples = [
    "a red panda in mid-backflip",
    "an astronaut floating in space",
    "a butterfly spreading its wings",
    "a robot arm painting with a brush",
    "a dragon egg with cracks appearing",
    "a person stepping through a glowing portal",
    "a mermaid swimming underwater",
    "a steampunk clock gear turning",
    "a flower bud slowly opening",
    "a wizard with magical energy swirling"
]

css = """
... (이전 CSS와 동일)

/* Examples μ˜μ—­ μŠ€νƒ€μΌ μ™„μ „ μž¬μ •μ˜ */
.gr-examples-parent {
    background: transparent !important;
}
.gr-examples-parent > div {
    background: transparent !important;
}
.gr-examples {
    background: transparent !important;
}
.gr-examples * {
    background: transparent !important;
}
.gr-samples-table {
    background: transparent !important;
}
.gr-samples-table > div {
    background: transparent !important;
}
.gr-samples-table button {
    background: transparent !important;
    border: none !important;
    box-shadow: none !important;
}
.gr-samples-table button:hover {
    background: rgba(0,0,0,0.05) !important;
}
div[class*="examples"] {
    background: transparent !important;
}

/* ν”„λ‘œκ·Έλ ˆμŠ€ λ°” μŠ€νƒ€μΌ κ°•ν™” */
.progress-bar {
    background-color: #f0f0f0;
    border-radius: 10px;
    padding: 5px;
    margin: 15px 0;
    box-shadow: 0 2px 5px rgba(0,0,0,0.1);
}

.progress-bar-fill {
    background: linear-gradient(45deg, #FF6B6B, #4ECDC4);
    height: 25px;
    border-radius: 7px;
    transition: width 0.3s ease-out;
    box-shadow: 0 2px 5px rgba(0,0,0,0.1);
}

.progress-text {
    color: black;
    font-weight: 600;
    margin-bottom: 8px;
    font-size: 1.1em;
}

/* 진행 μƒνƒœ ν…μŠ€νŠΈ μŠ€νƒ€μΌ */
.progress-label {
    display: block;
    text-align: center;
    margin-top: 5px;
    color: #666;
    font-size: 0.9em;
}
"""


def create_snow_effect():
    # CSS μŠ€νƒ€μΌ μ •μ˜
    snow_css = """
    @keyframes snowfall {
        0% {
            transform: translateY(-10vh) translateX(0);
            opacity: 1;
        }
        100% {
            transform: translateY(100vh) translateX(100px);
            opacity: 0.3;
        }
    }
    .snowflake {
        position: fixed;
        color: white;
        font-size: 1.5em;
        user-select: none;
        z-index: 1000;
        pointer-events: none;
        animation: snowfall linear infinite;
    }
    """

    # JavaScript μ½”λ“œ μ •μ˜
    snow_js = """
    function createSnowflake() {
        const snowflake = document.createElement('div');
        snowflake.innerHTML = '❄';
        snowflake.className = 'snowflake';
        snowflake.style.left = Math.random() * 100 + 'vw';
        snowflake.style.animationDuration = Math.random() * 3 + 2 + 's';
        snowflake.style.opacity = Math.random();
        document.body.appendChild(snowflake);
        
        setTimeout(() => {
            snowflake.remove();
        }, 5000);
    }
    setInterval(createSnowflake, 200);
    """

    # CSS와 JavaScriptλ₯Ό κ²°ν•©ν•œ HTML 
    snow_html = f"""
    <style>
        {snow_css}
    </style>
    <script>
        {snow_js}
    </script>
    """
    
    return gr.HTML(snow_html)


with gr.Blocks(theme="Yntec/HaleyCH_Theme_Orange", css=css) as demo:
    gr.HTML("""
        <div style="text-align: center; max-width: 800px; margin: 0 auto;">
            <h1 style="font-size: 3rem; font-weight: 700; margin-bottom: 1rem;">
                FLUX Animation Creator
            </h1>
            <p style="font-size: 1.2rem; color: #666; margin-bottom: 2rem;">
                Create amazing animated GIFs with AI - Just describe what you want to see!
            </p>
        </div>
    """)
    create_snow_effect()        
    with gr.Column(elem_id="col-container"):
        with gr.Row():
            prompt = gr.Text(
                label="Your Animation Prompt",
                show_label=True,
                max_lines=1,
                placeholder="Describe the animation you want to create...",
                container=True,
                elem_id="prompt-input"
            )
            run_button = gr.Button("✨ Generate", scale=0, variant="primary")
        
        result = gr.Image(
            label="Generated Animation", 
            show_label=True,
            elem_id="main-output",
            height=500
        )
        
        with gr.Row():
            result_full = gr.Image(
                label="Preview", 
                elem_id="preview-output",
                height=200
            )
            strip_image = gr.Image(
                label="Animation Strip", 
                elem_id="strip-output",
                height=150
            )
        
        with gr.Accordion("Advanced Settings", open=False):
            seed = gr.Slider(
                label="Seed",
                minimum=0,
                maximum=MAX_SEED,
                step=1,
                value=0,
            )
            randomize_seed = gr.Checkbox(label="Randomize seed", value=True)
            num_inference_steps = gr.Slider(
                label="Number of inference steps",
                minimum=1,
                maximum=25,
                step=1,
                value=20,
            )    
        
        gr.Examples(
            examples=examples,
            inputs=[prompt],
            outputs=[result, result_full, seed],
            fn=infer,
            cache_examples=True,
            label="Click on any example to try it out"
        )
    
    gr.on(
        triggers=[run_button.click, prompt.submit],
        fn=infer,
        inputs=[prompt, seed, randomize_seed, num_inference_steps],
        outputs=[result, result_full, seed]
    )

demo.theme = gr.themes.Default().set(
    body_text_color="black",
    block_label_text_color="black",
    block_title_text_color="black",
    body_text_color_subdued="black",
    background_fill_primary="white"
)

demo.queue().launch()