Spaces:
Running
on
Zero
Running
on
Zero
import gradio as gr | |
import torch | |
import spaces | |
from diffusers import FluxPipeline, FluxTransformer2DModel | |
from PIL import Image | |
from diffusers.utils import export_to_gif | |
import uuid | |
device = "cuda" if torch.cuda.is_available() else "cpu" | |
if torch.cuda.is_available(): | |
torch_dtype = torch.bfloat16 | |
else: | |
torch_dtype = torch.float32 | |
def split_image(input_image, num_splits=4): | |
# Create a list to store the output images | |
output_images = [] | |
# Split the image into four 256x256 sections | |
for i in range(num_splits): | |
left = i * 256 | |
right = (i + 1) * 256 | |
box = (left, 0, right, 256) | |
output_images.append(input_image.crop(box)) | |
return output_images | |
pipe = FluxPipeline.from_pretrained( | |
"black-forest-labs/FLUX.1-schnell", | |
torch_dtype=torch_dtype | |
) | |
pipe.to(device) | |
def infer(prompt, seed, randomize_seed, num_inference_steps, progress=gr.Progress(track_tqdm=True)): | |
prompt_template = f"A side by side 4 frame image showing consecutive stills from a looped gif moving from left to right. The gif is {prompt}" | |
if randomize_seed: | |
seed = random.randint(0, MAX_SEED) | |
generator = torch.Generator().manual_seed(seed) | |
image = pipe( | |
prompt=prompt, | |
num_inference_steps=num_inference_steps, | |
num_images_per_prompt=1, | |
generator=torch.Generator(device).manual_seed(seed), | |
height=height, | |
width=width | |
).images[0] | |
gif_name = f"{uuid.uuid4().hex}-flux.gif" | |
export_to_gif(split_image(image, 4), gif_name, fps=4) | |
return gif_name, seed | |
examples = [ | |
"Astronaut in a jungle, cold color palette, muted colors, detailed, 8k", | |
"An astronaut riding a green horse", | |
"A delicious ceviche cheesecake slice", | |
] | |
css=""" | |
#col-container { | |
margin: 0 auto; | |
max-width: 640px; | |
} | |
""" | |
with gr.Blocks(css=css) as demo: | |
with gr.Column(elem_id="col-container"): | |
gr.Markdown(f""" | |
# FLUX.1 Schnell Animations | |
Generate gifs with | |
""") | |
with gr.Row(): | |
prompt = gr.Text( | |
label="Prompt", | |
show_label=False, | |
max_lines=1, | |
placeholder="Enter your prompt", | |
container=False, | |
) | |
run_button = gr.Button("Run", scale=0) | |
result = gr.Image(label="Result", show_label=False) | |
with gr.Accordion("Advanced Settings", open=False): | |
seed = gr.Slider( | |
label="Seed", | |
minimum=0, | |
maximum=MAX_SEED, | |
step=1, | |
value=0, | |
) | |
randomize_seed = gr.Checkbox(label="Randomize seed", value=True) | |
num_inference_steps = gr.Slider( | |
label="Number of inference steps", | |
minimum=1, | |
maximum=12, | |
step=1, | |
value=4, | |
) | |
gr.Examples( | |
examples = examples, | |
inputs = [prompt] | |
) | |
gr.on( | |
trigger=[run_button.click, prompt.submit], | |
fn = infer, | |
inputs = [prompt, negative_prompt, seed, randomize_seed, width, height, guidance_scale, num_inference_steps], | |
outputs = [result, seed] | |
) | |
demo.queue().launch() |