|
|
|
import numpy as np |
|
from tqdm import tqdm |
|
import torch |
|
from lvdm.models.utils_diffusion import make_ddim_sampling_parameters, make_ddim_timesteps |
|
from lvdm.common import noise_like |
|
import random |
|
|
|
|
|
|
|
|
|
class DDIMSampler(object): |
|
def __init__(self, model, schedule="linear", **kwargs): |
|
super().__init__() |
|
self.model = model |
|
self.ddpm_num_timesteps = model.num_timesteps |
|
self.schedule = schedule |
|
self.counter = 0 |
|
self.backprop_mode = 'last' |
|
self.training_mode = False |
|
|
|
def register_buffer(self, name, attr): |
|
if type(attr) == torch.Tensor: |
|
if attr.device != torch.device("cuda"): |
|
attr = attr.to(torch.device("cuda")) |
|
setattr(self, name, attr) |
|
|
|
def make_schedule(self, ddim_num_steps, ddim_discretize="uniform", ddim_eta=0., verbose=True): |
|
self.ddim_timesteps = make_ddim_timesteps(ddim_discr_method=ddim_discretize, num_ddim_timesteps=ddim_num_steps, |
|
num_ddpm_timesteps=self.ddpm_num_timesteps,verbose=verbose) |
|
alphas_cumprod = self.model.alphas_cumprod |
|
assert alphas_cumprod.shape[0] == self.ddpm_num_timesteps, 'alphas have to be defined for each timestep' |
|
to_torch = lambda x: x.clone().detach().to(torch.float32).to(self.model.device) |
|
|
|
self.register_buffer('betas', to_torch(self.model.betas)) |
|
self.register_buffer('alphas_cumprod', to_torch(alphas_cumprod)) |
|
self.register_buffer('alphas_cumprod_prev', to_torch(self.model.alphas_cumprod_prev)) |
|
self.use_scale = self.model.use_scale |
|
|
|
|
|
if self.use_scale: |
|
self.register_buffer('scale_arr', to_torch(self.model.scale_arr)) |
|
ddim_scale_arr = self.scale_arr.cpu()[self.ddim_timesteps] |
|
self.register_buffer('ddim_scale_arr', ddim_scale_arr) |
|
ddim_scale_arr = np.asarray([self.scale_arr.cpu()[0]] + self.scale_arr.cpu()[self.ddim_timesteps[:-1]].tolist()) |
|
self.register_buffer('ddim_scale_arr_prev', ddim_scale_arr) |
|
|
|
|
|
self.register_buffer('sqrt_alphas_cumprod', to_torch(np.sqrt(alphas_cumprod.cpu()))) |
|
self.register_buffer('sqrt_one_minus_alphas_cumprod', to_torch(np.sqrt(1. - alphas_cumprod.cpu()))) |
|
self.register_buffer('log_one_minus_alphas_cumprod', to_torch(np.log(1. - alphas_cumprod.cpu()))) |
|
self.register_buffer('sqrt_recip_alphas_cumprod', to_torch(np.sqrt(1. / alphas_cumprod.cpu()))) |
|
self.register_buffer('sqrt_recipm1_alphas_cumprod', to_torch(np.sqrt(1. / alphas_cumprod.cpu() - 1))) |
|
|
|
|
|
ddim_sigmas, ddim_alphas, ddim_alphas_prev = make_ddim_sampling_parameters(alphacums=alphas_cumprod.cpu(), |
|
ddim_timesteps=self.ddim_timesteps, |
|
eta=ddim_eta,verbose=verbose) |
|
self.register_buffer('ddim_sigmas', ddim_sigmas) |
|
self.register_buffer('ddim_alphas', ddim_alphas) |
|
self.register_buffer('ddim_alphas_prev', ddim_alphas_prev) |
|
self.register_buffer('ddim_sqrt_one_minus_alphas', np.sqrt(1. - ddim_alphas)) |
|
sigmas_for_original_sampling_steps = ddim_eta * torch.sqrt( |
|
(1 - self.alphas_cumprod_prev) / (1 - self.alphas_cumprod) * ( |
|
1 - self.alphas_cumprod / self.alphas_cumprod_prev)) |
|
self.register_buffer('ddim_sigmas_for_original_num_steps', sigmas_for_original_sampling_steps) |
|
|
|
|
|
def sample(self, |
|
S, |
|
batch_size, |
|
shape, |
|
conditioning=None, |
|
callback=None, |
|
normals_sequence=None, |
|
img_callback=None, |
|
quantize_x0=False, |
|
eta=0., |
|
mask=None, |
|
x0=None, |
|
temperature=1., |
|
noise_dropout=0., |
|
score_corrector=None, |
|
corrector_kwargs=None, |
|
verbose=True, |
|
schedule_verbose=False, |
|
x_T=None, |
|
log_every_t=100, |
|
unconditional_guidance_scale=1., |
|
unconditional_conditioning=None, |
|
|
|
**kwargs |
|
): |
|
|
|
|
|
if conditioning is not None: |
|
if isinstance(conditioning, dict): |
|
try: |
|
cbs = conditioning[list(conditioning.keys())[0]].shape[0] |
|
except: |
|
cbs = conditioning[list(conditioning.keys())[0]][0].shape[0] |
|
|
|
if cbs != batch_size: |
|
print(f"Warning: Got {cbs} conditionings but batch-size is {batch_size}") |
|
else: |
|
if conditioning.shape[0] != batch_size: |
|
print(f"Warning: Got {conditioning.shape[0]} conditionings but batch-size is {batch_size}") |
|
|
|
self.make_schedule(ddim_num_steps=S, ddim_eta=eta, verbose=schedule_verbose) |
|
self.ddim_num_steps = S |
|
|
|
|
|
if len(shape) == 3: |
|
C, H, W = shape |
|
size = (batch_size, C, H, W) |
|
elif len(shape) == 4: |
|
C, T, H, W = shape |
|
size = (batch_size, C, T, H, W) |
|
|
|
|
|
samples, intermediates = self.ddim_sampling(conditioning, size, |
|
callback=callback, |
|
img_callback=img_callback, |
|
quantize_denoised=quantize_x0, |
|
mask=mask, x0=x0, |
|
ddim_use_original_steps=False, |
|
noise_dropout=noise_dropout, |
|
temperature=temperature, |
|
score_corrector=score_corrector, |
|
corrector_kwargs=corrector_kwargs, |
|
x_T=x_T, |
|
log_every_t=log_every_t, |
|
unconditional_guidance_scale=unconditional_guidance_scale, |
|
unconditional_conditioning=unconditional_conditioning, |
|
verbose=verbose, |
|
**kwargs) |
|
return samples, intermediates |
|
|
|
|
|
def ddim_sampling(self, cond, shape, |
|
x_T=None, ddim_use_original_steps=False, |
|
callback=None, timesteps=None, quantize_denoised=False, |
|
mask=None, x0=None, img_callback=None, log_every_t=100, |
|
temperature=1., noise_dropout=0., score_corrector=None, corrector_kwargs=None, |
|
unconditional_guidance_scale=1., unconditional_conditioning=None, verbose=True, |
|
cond_tau=1., target_size=None, start_timesteps=None, |
|
**kwargs): |
|
device = self.model.betas.device |
|
|
|
b = shape[0] |
|
if x_T is None: |
|
img = torch.randn(shape, device=device) |
|
else: |
|
img = x_T |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
if timesteps is None: |
|
timesteps = self.ddpm_num_timesteps if ddim_use_original_steps else self.ddim_timesteps |
|
elif timesteps is not None and not ddim_use_original_steps: |
|
subset_end = int(min(timesteps / self.ddim_timesteps.shape[0], 1) * self.ddim_timesteps.shape[0]) - 1 |
|
timesteps = self.ddim_timesteps[:subset_end] |
|
|
|
intermediates = {'x_inter': [img], 'pred_x0': [img]} |
|
time_range = reversed(range(0,timesteps)) if ddim_use_original_steps else np.flip(timesteps) |
|
total_steps = timesteps if ddim_use_original_steps else timesteps.shape[0] |
|
if verbose: |
|
iterator = tqdm(time_range, desc='DDIM Sampler', total=total_steps) |
|
else: |
|
iterator = time_range |
|
|
|
init_x0 = False |
|
clean_cond = kwargs.pop("clean_cond", False) |
|
|
|
if self.training_mode == True: |
|
if self.backprop_mode == 'last': |
|
backprop_cutoff_idx = self.ddim_num_steps - 1 |
|
elif self.backprop_mode == 'rand': |
|
backprop_cutoff_idx = random.randint(0, self.ddim_num_steps - 1) |
|
elif self.backprop_mode == 'specific': |
|
backprop_cutoff_idx = 15 |
|
|
|
for i, step in enumerate(iterator): |
|
index = total_steps - i - 1 |
|
ts = torch.full((b,), step, device=device, dtype=torch.long) |
|
|
|
if self.training_mode == True: |
|
if i >= backprop_cutoff_idx: |
|
for name, param in self.model.named_parameters(): |
|
if "lora" in name: |
|
param.requires_grad = True |
|
else: |
|
for name, param in self.model.named_parameters(): |
|
param.requires_grad = False |
|
|
|
|
|
if start_timesteps is not None: |
|
assert x0 is not None |
|
if step > start_timesteps*time_range[0]: |
|
continue |
|
elif not init_x0: |
|
img = self.model.q_sample(x0, ts) |
|
init_x0 = True |
|
|
|
|
|
if mask is not None: |
|
assert x0 is not None |
|
if clean_cond: |
|
img_orig = x0 |
|
else: |
|
img_orig = self.model.q_sample(x0, ts) |
|
img = img_orig * mask + (1. - mask) * img |
|
|
|
index_clip = int((1 - cond_tau) * total_steps) |
|
if index <= index_clip and target_size is not None: |
|
target_size_ = [target_size[0], target_size[1]//8, target_size[2]//8] |
|
img = torch.nn.functional.interpolate( |
|
img, |
|
size=target_size_, |
|
mode="nearest", |
|
) |
|
|
|
forward_context = torch.autograd.graph.save_on_cpu |
|
with forward_context(): |
|
outs = self.p_sample_ddim(img, cond, ts, index=index, use_original_steps=ddim_use_original_steps, |
|
quantize_denoised=quantize_denoised, temperature=temperature, |
|
noise_dropout=noise_dropout, score_corrector=score_corrector, |
|
corrector_kwargs=corrector_kwargs, |
|
unconditional_guidance_scale=unconditional_guidance_scale, |
|
unconditional_conditioning=unconditional_conditioning, |
|
x0=x0, |
|
**kwargs) |
|
|
|
img, pred_x0 = outs |
|
|
|
if callback: callback(i) |
|
if img_callback: img_callback(pred_x0, i) |
|
|
|
if index % log_every_t == 0 or index == total_steps - 1: |
|
intermediates['x_inter'].append(img) |
|
intermediates['pred_x0'].append(pred_x0) |
|
|
|
return img, intermediates |
|
|
|
|
|
def p_sample_ddim(self, x, c, t, index, repeat_noise=False, use_original_steps=False, quantize_denoised=False, |
|
temperature=1., noise_dropout=0., score_corrector=None, corrector_kwargs=None, |
|
unconditional_guidance_scale=1., unconditional_conditioning=None, |
|
uc_type=None, conditional_guidance_scale_temporal=None, **kwargs): |
|
b, *_, device = *x.shape, x.device |
|
|
|
if x.dim() == 5: |
|
is_video = True |
|
else: |
|
is_video = False |
|
if unconditional_conditioning is None or unconditional_guidance_scale == 1.: |
|
e_t = self.model.apply_model(x, t, c, **kwargs) |
|
else: |
|
|
|
if isinstance(c, torch.Tensor): |
|
e_t = self.model.apply_model(x, t, c, **kwargs) |
|
e_t_uncond = self.model.apply_model(x, t, unconditional_conditioning, **kwargs) |
|
elif isinstance(c, dict): |
|
e_t = self.model.apply_model(x, t, c, **kwargs) |
|
e_t_uncond = self.model.apply_model(x, t, unconditional_conditioning, **kwargs) |
|
else: |
|
raise NotImplementedError |
|
|
|
if uc_type is None: |
|
e_t = e_t_uncond + unconditional_guidance_scale * (e_t - e_t_uncond) |
|
else: |
|
if uc_type == 'cfg_original': |
|
e_t = e_t + unconditional_guidance_scale * (e_t - e_t_uncond) |
|
elif uc_type == 'cfg_ours': |
|
e_t = e_t + unconditional_guidance_scale * (e_t_uncond - e_t) |
|
else: |
|
raise NotImplementedError |
|
|
|
|
|
if conditional_guidance_scale_temporal is not None: |
|
e_t_temporal = self.model.apply_model(x, t, c, **kwargs) |
|
e_t_image = self.model.apply_model(x, t, c, no_temporal_attn=True, **kwargs) |
|
e_t = e_t + conditional_guidance_scale_temporal * (e_t_temporal - e_t_image) |
|
|
|
if score_corrector is not None: |
|
assert self.model.parameterization == "eps" |
|
e_t = score_corrector.modify_score(self.model, e_t, x, t, c, **corrector_kwargs) |
|
|
|
alphas = self.model.alphas_cumprod if use_original_steps else self.ddim_alphas |
|
alphas_prev = self.model.alphas_cumprod_prev if use_original_steps else self.ddim_alphas_prev |
|
sqrt_one_minus_alphas = self.model.sqrt_one_minus_alphas_cumprod if use_original_steps else self.ddim_sqrt_one_minus_alphas |
|
sigmas = self.model.ddim_sigmas_for_original_num_steps if use_original_steps else self.ddim_sigmas |
|
|
|
|
|
if is_video: |
|
size = (b, 1, 1, 1, 1) |
|
else: |
|
size = (b, 1, 1, 1) |
|
a_t = torch.full(size, alphas[index], device=device) |
|
a_prev = torch.full(size, alphas_prev[index], device=device) |
|
sigma_t = torch.full(size, sigmas[index], device=device) |
|
sqrt_one_minus_at = torch.full(size, sqrt_one_minus_alphas[index],device=device) |
|
|
|
|
|
pred_x0 = (x - sqrt_one_minus_at * e_t) / a_t.sqrt() |
|
if quantize_denoised: |
|
pred_x0, _, *_ = self.model.first_stage_model.quantize(pred_x0) |
|
|
|
dir_xt = (1. - a_prev - sigma_t**2).sqrt() * e_t |
|
|
|
noise = sigma_t * noise_like(x.shape, device, repeat_noise) * temperature |
|
if noise_dropout > 0.: |
|
noise = torch.nn.functional.dropout(noise, p=noise_dropout) |
|
alphas = self.model.alphas_cumprod if use_original_steps else self.ddim_alphas |
|
if self.use_scale: |
|
scale_arr = self.model.scale_arr if use_original_steps else self.ddim_scale_arr |
|
scale_t = torch.full(size, scale_arr[index], device=device) |
|
scale_arr_prev = self.model.scale_arr_prev if use_original_steps else self.ddim_scale_arr_prev |
|
scale_t_prev = torch.full(size, scale_arr_prev[index], device=device) |
|
pred_x0 /= scale_t |
|
x_prev = a_prev.sqrt() * scale_t_prev * pred_x0 + dir_xt + noise |
|
else: |
|
x_prev = a_prev.sqrt() * pred_x0 + dir_xt + noise |
|
|
|
return x_prev, pred_x0 |
|
|
|
|
|
@torch.no_grad() |
|
def stochastic_encode(self, x0, t, use_original_steps=False, noise=None): |
|
|
|
|
|
if use_original_steps: |
|
sqrt_alphas_cumprod = self.sqrt_alphas_cumprod |
|
sqrt_one_minus_alphas_cumprod = self.sqrt_one_minus_alphas_cumprod |
|
else: |
|
sqrt_alphas_cumprod = torch.sqrt(self.ddim_alphas) |
|
sqrt_one_minus_alphas_cumprod = self.ddim_sqrt_one_minus_alphas |
|
|
|
if noise is None: |
|
noise = torch.randn_like(x0) |
|
|
|
def extract_into_tensor(a, t, x_shape): |
|
b, *_ = t.shape |
|
out = a.gather(-1, t) |
|
return out.reshape(b, *((1,) * (len(x_shape) - 1))) |
|
|
|
return (extract_into_tensor(sqrt_alphas_cumprod, t, x0.shape) * x0 + |
|
extract_into_tensor(sqrt_one_minus_alphas_cumprod, t, x0.shape) * noise) |
|
|
|
@torch.no_grad() |
|
def decode(self, x_latent, cond, t_start, unconditional_guidance_scale=1.0, unconditional_conditioning=None, |
|
use_original_steps=False): |
|
|
|
timesteps = np.arange(self.ddpm_num_timesteps) if use_original_steps else self.ddim_timesteps |
|
timesteps = timesteps[:t_start] |
|
|
|
time_range = np.flip(timesteps) |
|
total_steps = timesteps.shape[0] |
|
print(f"Running DDIM Sampling with {total_steps} timesteps") |
|
|
|
iterator = tqdm(time_range, desc='Decoding image', total=total_steps) |
|
x_dec = x_latent |
|
for i, step in enumerate(iterator): |
|
index = total_steps - i - 1 |
|
ts = torch.full((x_latent.shape[0],), step, device=x_latent.device, dtype=torch.long) |
|
x_dec, _ = self.p_sample_ddim(x_dec, cond, ts, index=index, use_original_steps=use_original_steps, |
|
unconditional_guidance_scale=unconditional_guidance_scale, |
|
unconditional_conditioning=unconditional_conditioning) |
|
return x_dec |
|
|
|
|