File size: 31,209 Bytes
0e06f3a
ee64981
1504958
ee64981
1504958
ee64981
 
 
 
 
 
 
 
 
 
3fbccb1
ee64981
 
3fbccb1
ee64981
 
 
 
 
 
 
 
ca6d53d
e47f638
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
719d3c9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ca6d53d
 
 
 
 
 
 
 
 
 
 
 
28f1c45
719d3c9
ca6d53d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
719d3c9
 
 
ca6d53d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
719d3c9
ca6d53d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
719d3c9
ca6d53d
719d3c9
 
 
ca6d53d
 
 
 
 
 
 
 
 
 
 
719d3c9
 
 
 
 
 
 
 
 
ca6d53d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
719d3c9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ee64981
719d3c9
 
ee64981
719d3c9
 
b1f2a77
719d3c9
 
 
ee64981
719d3c9
 
 
1504958
719d3c9
 
 
 
1504958
719d3c9
 
 
 
 
 
3fbccb1
719d3c9
 
 
 
 
 
 
 
 
 
 
 
3fbccb1
719d3c9
 
 
1504958
ee64981
719d3c9
 
ee64981
719d3c9
 
 
 
 
f6ed375
719d3c9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1504958
719d3c9
 
 
 
 
 
1b643b2
719d3c9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
47f3fb4
494bc3a
 
 
 
 
719d3c9
 
586370e
719d3c9
 
 
586370e
494bc3a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
719d3c9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
494bc3a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ee64981
494bc3a
719d3c9
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
import spaces
from functools import lru_cache
import gradio as gr
from gradio_toggle import Toggle
import torch
from huggingface_hub import snapshot_download
from transformers import CLIPProcessor, CLIPModel, pipeline
import random
from xora.models.autoencoders.causal_video_autoencoder import CausalVideoAutoencoder
from xora.models.transformers.transformer3d import Transformer3DModel
from xora.models.transformers.symmetric_patchifier import SymmetricPatchifier
from xora.schedulers.rf import RectifiedFlowScheduler
from xora.pipelines.pipeline_xora_video import XoraVideoPipeline
from transformers import T5EncoderModel, T5Tokenizer
from xora.utils.conditioning_method import ConditioningMethod
from pathlib import Path
import safetensors.torch
import json
import numpy as np
import cv2
from PIL import Image
import tempfile
import os
import gc
import csv
from datetime import datetime
from openai import OpenAI



import argparse
import time
from os import path
import shutil
from datetime import datetime
from safetensors.torch import load_file
from diffusers import FluxPipeline
from diffusers.pipelines.stable_diffusion import safety_checker
from PIL import Image
from transformers import pipeline
import replicate
import logging
import requests
from pathlib import Path
import sys
import io

# ํ•œ๊ธ€-์˜์–ด ๋ฒˆ์—ญ๊ธฐ ์ดˆ๊ธฐํ™”
translator = pipeline("translation", model="Helsinki-NLP/opus-mt-ko-en")

torch.backends.cuda.matmul.allow_tf32 = False
torch.backends.cuda.matmul.allow_bf16_reduced_precision_reduction = False
torch.backends.cuda.matmul.allow_fp16_reduced_precision_reduction = False
torch.backends.cudnn.allow_tf32 = False
torch.backends.cudnn.deterministic = False
torch.backends.cuda.preferred_blas_library="cublas"
torch.set_float32_matmul_precision("highest")

MAX_SEED = np.iinfo(np.int32).max

# Load Hugging Face token if needed
hf_token = os.getenv("HF_TOKEN")
openai_api_key = os.getenv("OPENAI_API_KEY")
client = OpenAI(api_key=openai_api_key)

system_prompt_t2v_path = "assets/system_prompt_t2v.txt"
with open(system_prompt_t2v_path, "r") as f:
    system_prompt_t2v = f.read()

# Set model download directory within Hugging Face Spaces
model_path = "asset"

commit_hash='c7c8ad4c2ddba847b94e8bfaefbd30bd8669fafc'

if not os.path.exists(model_path):
    snapshot_download("Lightricks/LTX-Video", revision=commit_hash, local_dir=model_path, repo_type="model", token=hf_token)

# Global variables to load components
vae_dir = Path(model_path) / "vae"
unet_dir = Path(model_path) / "unet"
scheduler_dir = Path(model_path) / "scheduler"

device = torch.device("cuda" if torch.cuda.is_available() else "cpu")

clip_model = CLIPModel.from_pretrained("openai/clip-vit-base-patch32", cache_dir=model_path).to(torch.device("cuda:0"))
clip_processor = CLIPProcessor.from_pretrained("openai/clip-vit-base-patch32", cache_dir=model_path)

def process_prompt(prompt):
    # ํ•œ๊ธ€์ด ํฌํ•จ๋˜์–ด ์žˆ๋Š”์ง€ ํ™•์ธ
    if any(ord('๊ฐ€') <= ord(char) <= ord('ํžฃ') for char in prompt):
        # ํ•œ๊ธ€์„ ์˜์–ด๋กœ ๋ฒˆ์—ญ
        translated = translator(prompt)[0]['translation_text']
        return translated
    return prompt

def compute_clip_embedding(text=None):
    inputs = clip_processor(text=text, return_tensors="pt", padding=True).to(device)
    outputs = clip_model.get_text_features(**inputs)
    embedding = outputs.detach().cpu().numpy().flatten().tolist()
    return embedding

def load_vae(vae_dir):
    vae_ckpt_path = vae_dir / "vae_diffusion_pytorch_model.safetensors"
    vae_config_path = vae_dir / "config.json"
    with open(vae_config_path, "r") as f:
        vae_config = json.load(f)
    vae = CausalVideoAutoencoder.from_config(vae_config)
    vae_state_dict = safetensors.torch.load_file(vae_ckpt_path)
    vae.load_state_dict(vae_state_dict)
    return vae.to(device).to(torch.bfloat16)

def load_unet(unet_dir):
    unet_ckpt_path = unet_dir / "unet_diffusion_pytorch_model.safetensors"
    unet_config_path = unet_dir / "config.json"
    transformer_config = Transformer3DModel.load_config(unet_config_path)
    transformer = Transformer3DModel.from_config(transformer_config)
    unet_state_dict = safetensors.torch.load_file(unet_ckpt_path)
    transformer.load_state_dict(unet_state_dict, strict=True)
    return transformer.to(device).to(torch.bfloat16)

def load_scheduler(scheduler_dir):
    scheduler_config_path = scheduler_dir / "scheduler_config.json"
    scheduler_config = RectifiedFlowScheduler.load_config(scheduler_config_path)
    return RectifiedFlowScheduler.from_config(scheduler_config)

# Preset options for resolution and frame configuration
preset_options = [
    {"label": "1216x704, 41 frames", "width": 1216, "height": 704, "num_frames": 41},
    {"label": "1088x704, 49 frames", "width": 1088, "height": 704, "num_frames": 49},
    {"label": "1056x640, 57 frames", "width": 1056, "height": 640, "num_frames": 57},
    {"label": "448x448, 100 frames", "width": 448, "height": 448, "num_frames": 100},
    {"label": "448x448, 200 frames", "width": 448, "height": 448, "num_frames": 200},
    {"label": "448x448, 300 frames", "width": 448, "height": 448, "num_frames": 300},
    {"label": "640x640, 80 frames", "width": 640, "height": 640, "num_frames": 80},
    {"label": "640x640, 120 frames", "width": 640, "height": 640, "num_frames": 120},
    {"label": "768x768, 64 frames", "width": 768, "height": 768, "num_frames": 64},
    {"label": "768x768, 90 frames", "width": 768, "height": 768, "num_frames": 90},
    {"label": "720x720, 64 frames", "width": 768, "height": 768, "num_frames": 64},
    {"label": "720x720, 100 frames", "width": 768, "height": 768, "num_frames": 100},
    {"label": "768x512, 97 frames", "width": 768, "height": 512, "num_frames": 97},
    {"label": "512x512, 160 frames", "width": 512, "height": 512, "num_frames": 160},
    {"label": "512x512, 200 frames", "width": 512, "height": 512, "num_frames": 200},
]

def preset_changed(preset):
    if preset != "Custom":
        selected = next(item for item in preset_options if item["label"] == preset)
        return (
            selected["height"],
            selected["width"],
            selected["num_frames"],
            gr.update(visible=False),
            gr.update(visible=False),
            gr.update(visible=False),
        )
    else:
        return (
            None,
            None,
            None,
            gr.update(visible=True),
            gr.update(visible=True),
            gr.update(visible=True),
        )

# Load models
vae = load_vae(vae_dir)
unet = load_unet(unet_dir)
scheduler = load_scheduler(scheduler_dir)
patchifier = SymmetricPatchifier(patch_size=1)
text_encoder = T5EncoderModel.from_pretrained("PixArt-alpha/PixArt-XL-2-1024-MS", subfolder="text_encoder").to(torch.device("cuda:0"))
tokenizer = T5Tokenizer.from_pretrained("PixArt-alpha/PixArt-XL-2-1024-MS", subfolder="tokenizer")

pipeline_video = XoraVideoPipeline(
    transformer=unet,
    patchifier=patchifier,
    text_encoder=text_encoder,
    tokenizer=tokenizer,
    scheduler=scheduler,
    vae=vae,
).to(torch.device("cuda:0"))

def enhance_prompt_if_enabled(prompt, enhance_toggle):
    if not enhance_toggle:
        print("Enhance toggle is off, Prompt: ", prompt)
        return prompt

    messages = [
        {"role": "system", "content": system_prompt_t2v},
        {"role": "user", "content": prompt},
    ]

    try:
        response = client.chat.completions.create(
            model="gpt-4-mini",
            messages=messages,
            max_tokens=200,
        )
        print("Enhanced Prompt: ", response.choices[0].message.content.strip())
        return response.choices[0].message.content.strip()
    except Exception as e:
        print(f"Error: {e}")
        return prompt

@spaces.GPU(duration=90)
def generate_video_from_text_90(
    prompt="",
    enhance_prompt_toggle=False,
    negative_prompt="",
    frame_rate=25,
    seed=random.randint(0, MAX_SEED),
    num_inference_steps=30,
    guidance_scale=3.2,
    height=768,
    width=768,
    num_frames=60,
    progress=gr.Progress(),
):
    # ํ”„๋กฌํ”„ํŠธ ์ „์ฒ˜๋ฆฌ (ํ•œ๊ธ€ -> ์˜์–ด)
    prompt = process_prompt(prompt)
    negative_prompt = process_prompt(negative_prompt)

    if len(prompt.strip()) < 50:
        raise gr.Error(
            "Prompt must be at least 50 characters long. Please provide more details for the best results.",
            duration=5,
        )

    prompt = enhance_prompt_if_enabled(prompt, enhance_prompt_toggle)

    sample = {
        "prompt": prompt,
        "prompt_attention_mask": None,
        "negative_prompt": negative_prompt,
        "negative_prompt_attention_mask": None,
        "media_items": None,
    }

    generator = torch.Generator(device="cuda").manual_seed(seed)

    def gradio_progress_callback(self, step, timestep, kwargs):
        progress((step + 1) / num_inference_steps)

    try:
        with torch.no_grad():
            images = pipeline_video(
                num_inference_steps=num_inference_steps,
                num_images_per_prompt=1,
                guidance_scale=guidance_scale,
                generator=generator,
                output_type="pt",
                height=height,
                width=width,
                num_frames=num_frames,
                frame_rate=frame_rate,
                **sample,
                is_video=True,
                vae_per_channel_normalize=True,
                conditioning_method=ConditioningMethod.UNCONDITIONAL,
                mixed_precision=True,
                callback_on_step_end=gradio_progress_callback,
            ).images
    except Exception as e:
        raise gr.Error(
            f"An error occurred while generating the video. Please try again. Error: {e}",
            duration=5,
        )
    finally:
        torch.cuda.empty_cache()
        gc.collect()

    output_path = tempfile.mktemp(suffix=".mp4")
    video_np = images.squeeze(0).permute(1, 2, 3, 0).cpu().float().numpy()
    video_np = (video_np * 255).astype(np.uint8)
    height, width = video_np.shape[1:3]
    out = cv2.VideoWriter(output_path, cv2.VideoWriter_fourcc(*"mp4v"), frame_rate, (width, height))
    for frame in video_np[..., ::-1]:
        out.write(frame)
    out.release()
    del images
    del video_np
    torch.cuda.empty_cache()
    return output_path

def create_advanced_options():
    with gr.Accordion("Step 4: Advanced Options (Optional)", open=False):
        seed = gr.Slider(label="4.1 Seed", minimum=0, maximum=1000000, step=1, value=646373)
        inference_steps = gr.Slider(label="4.2 Inference Steps", minimum=5, maximum=150, step=5, value=40)
        guidance_scale = gr.Slider(label="4.3 Guidance Scale", minimum=1.0, maximum=10.0, step=0.1, value=4.2)
        
        height_slider = gr.Slider(
            label="4.4 Height",
            minimum=256,
            maximum=1024,
            step=64,
            value=768,
            visible=False,
        )
        width_slider = gr.Slider(
            label="4.5 Width",
            minimum=256,
            maximum=1024,
            step=64,
            value=768,
            visible=False,
        )
        num_frames_slider = gr.Slider(
            label="4.5 Number of Frames",
            minimum=1,
            maximum=500,
            step=1,
            value=60,
            visible=False,
        )

        return [
            seed,
            inference_steps,
            guidance_scale,
            height_slider,
            width_slider,
            num_frames_slider,
        ]

###############################################
# ์—ฌ๊ธฐ์„œ๋ถ€ํ„ฐ ๋‘ ๋ฒˆ์งธ ์ฝ”๋“œ ํ†ตํ•ฉ ์ ์šฉ
###############################################

import argparse
import time
from os import path
import shutil
from safetensors.torch import load_file
from diffusers import FluxPipeline
from diffusers.pipelines.stable_diffusion import safety_checker
import replicate
import logging
import requests
from pathlib import Path
import sys
import io

# ๋กœ๊น… ์„ค์ •
logging.basicConfig(level=logging.INFO)
logger = logging.getLogger(__name__)

# Setup and initialization code
cache_path = path.join(path.dirname(path.abspath(__file__)), "models")
PERSISTENT_DIR = os.environ.get("PERSISTENT_DIR", ".")
gallery_path = path.join(PERSISTENT_DIR, "gallery")
video_gallery_path = path.join(PERSISTENT_DIR, "video_gallery")

# API ์„ค์ •
CATBOX_USER_HASH = "e7a96fc68dd4c7d2954040cd5"
REPLICATE_API_TOKEN = os.getenv("API_KEY")

# ํ™˜๊ฒฝ ๋ณ€์ˆ˜ ์„ค์ •
os.environ["TRANSFORMERS_CACHE"] = cache_path
os.environ["HF_HUB_CACHE"] = cache_path
os.environ["HF_HOME"] = cache_path

# CUDA ์„ค์ •
torch.backends.cuda.matmul.allow_tf32 = True

# ๋ฒˆ์—ญ๊ธฐ ์ดˆ๊ธฐํ™” (์ด๋ฏธ ์œ„์—์„œ translator ์„ ์–ธ๋จ, ์ค‘๋ณต ์„ ์–ธ)
translator2 = pipeline("translation", model="Helsinki-NLP/opus-mt-ko-en")  # ๋‘ ๋ฒˆ์งธ ์ฝ”๋“œ์—์„œ๋„ ์„ ์–ธ. ๋ˆ„๋ฝ์—†์ด ์ถœ๋ ฅํ•˜๊ธฐ ์œ„ํ•ด ์ถ”๊ฐ€.

# ๋””๋ ‰ํ† ๋ฆฌ ์ƒ์„ฑ
for dir_path in [gallery_path, video_gallery_path]:
    if not path.exists(dir_path):
        os.makedirs(dir_path, exist_ok=True)

def check_api_key():
    """API ํ‚ค ํ™•์ธ ๋ฐ ์„ค์ •"""
    if not REPLICATE_API_TOKEN:
        logger.error("Replicate API key not found")
        return False
    os.environ["REPLICATE_API_TOKEN"] = REPLICATE_API_TOKEN
    logger.info("Replicate API token set successfully")
    return True

def translate_if_korean(text):
    """ํ•œ๊ธ€์ด ํฌํ•จ๋œ ๊ฒฝ์šฐ ์˜์–ด๋กœ ๋ฒˆ์—ญ"""
    if any(ord(char) >= 0xAC00 and ord(char) <= 0xD7A3 for char in text):
        translation = translator2(text)[0]['translation_text']
        return translation
    return text

def filter_prompt(prompt):
    inappropriate_keywords = [
        "nude", "naked", "nsfw", "porn", "sex", "explicit", "adult", "xxx",
        "erotic", "sensual", "seductive", "provocative", "intimate",
        "violence", "gore", "blood", "death", "kill", "murder", "torture",
        "drug", "suicide", "abuse", "hate", "discrimination"
    ]
    
    prompt_lower = prompt.lower()
    for keyword in inappropriate_keywords:
        if keyword in prompt_lower:
            return False, "๋ถ€์ ์ ˆํ•œ ๋‚ด์šฉ์ด ํฌํ•จ๋œ ํ”„๋กฌํ”„ํŠธ์ž…๋‹ˆ๋‹ค."
    return True, prompt

def process_prompt_for_sd(prompt):
    """ํ”„๋กฌํ”„ํŠธ ์ „์ฒ˜๋ฆฌ (๋ฒˆ์—ญ ๋ฐ ํ•„ํ„ฐ๋ง)"""
    translated_prompt = translate_if_korean(prompt)
    is_safe, filtered_prompt = filter_prompt(translated_prompt)
    return is_safe, filtered_prompt

class timer:
    def __init__(self, method_name="timed process"):
        self.method = method_name
    def __enter__(self):
        self.start = time.time()
        print(f"{self.method} starts")
    def __exit__(self, exc_type, exc_val, exc_tb):
        end = time.time()
        print(f"{self.method} took {str(round(end - self.start, 2))}s")

# Model initialization
if not path.exists(cache_path):
    os.makedirs(cache_path, exist_ok=True)

pipe_sd = FluxPipeline.from_pretrained("black-forest-labs/FLUX.1-dev", torch_dtype=torch.bfloat16)
pipe_sd.load_lora_weights(hf_hub_download("ByteDance/Hyper-SD", "Hyper-FLUX.1-dev-8steps-lora.safetensors"))
pipe_sd.fuse_lora(lora_scale=0.125)
pipe_sd.to(device="cuda", dtype=torch.bfloat16)
pipe_sd.safety_checker = safety_checker.StableDiffusionSafetyChecker.from_pretrained("CompVis/stable-diffusion-safety-checker")

def upload_to_catbox(image_path):
    """catbox.moe API๋ฅผ ์‚ฌ์šฉํ•˜์—ฌ ์ด๋ฏธ์ง€ ์—…๋กœ๋“œ"""
    try:
        logger.info(f"Preparing to upload image: {image_path}")
        url = "https://catbox.moe/user/api.php"
        
        file_extension = Path(image_path).suffix.lower()
        if file_extension not in ['.jpg', '.jpeg', '.png', '.gif']:
            logger.error(f"Unsupported file type: {file_extension}")
            return None

        files = {
            'fileToUpload': (
                os.path.basename(image_path),
                open(image_path, 'rb'),
                'image/jpeg' if file_extension in ['.jpg', '.jpeg'] else 'image/png'
            )
        }
        
        data = {
            'reqtype': 'fileupload',
            'userhash': CATBOX_USER_HASH
        }

        response = requests.post(url, files=files, data=data)
        
        if response.status_code == 200 and response.text.startswith('http'):
            image_url = response.text
            logger.info(f"Image uploaded successfully: {image_url}")
            return image_url
        else:
            raise Exception(f"Upload failed: {response.text}")

    except Exception as e:
        logger.error(f"Image upload error: {str(e)}")
        return None

def add_watermark(video_path):
    """OpenCV๋ฅผ ์‚ฌ์šฉํ•˜์—ฌ ๋น„๋””์˜ค์— ์›Œํ„ฐ๋งˆํฌ ์ถ”๊ฐ€"""
    try:
        cap = cv2.VideoCapture(video_path)
        width = int(cap.get(cv2.CAP_PROP_FRAME_WIDTH))
        height = int(cap.get(cv2.CAP_PROP_FRAME_HEIGHT))
        fps = int(cap.get(cv2.CAP_PROP_FPS))
        
        text = "GiniGEN.AI"
        font = cv2.FONT_HERSHEY_SIMPLEX
        font_scale = height * 0.05 / 30
        thickness = 2
        color = (255, 255, 255)
        
        (text_width, text_height), _ = cv2.getTextSize(text, font, font_scale, thickness)
        margin = int(height * 0.02)
        x_pos = width - text_width - margin
        y_pos = height - margin
        
        output_path = "watermarked_output.mp4"
        fourcc = cv2.VideoWriter_fourcc(*'mp4v')
        out = cv2.VideoWriter(output_path, fourcc, fps, (width, height))
        
        while cap.isOpened():
            ret, frame = cap.read()
            if not ret:
                break
            cv2.putText(frame, text, (x_pos, y_pos), font, font_scale, color, thickness)
            out.write(frame)
        
        cap.release()
        out.release()
        
        return output_path
        
    except Exception as e:
        logger.error(f"Error adding watermark: {str(e)}")
        return video_path

def generate_video(image, prompt):
    logger.info("Starting video generation")
    try:
        if not check_api_key():
            return "Replicate API key not properly configured"

        if not image:
            logger.error("No image provided")
            return "Please upload an image"

        image_url = upload_to_catbox(image)
        if not image_url:
            return "Failed to upload image"

        input_data = {
            "prompt": prompt,
            "first_frame_image": image_url
        }

        try:
            replicate.Client(api_token=REPLICATE_API_TOKEN)
            output = replicate.run(
                "minimax/video-01-live",
                input=input_data
            )

            temp_file = "temp_output.mp4"
            
            if hasattr(output, 'read'):
                with open(temp_file, "wb") as file:
                    file.write(output.read())
            elif isinstance(output, str):
                response = requests.get(output)
                with open(temp_file, "wb") as file:
                    file.write(response.content)
            
            final_video = add_watermark(temp_file)
            return final_video

        except Exception as api_error:
            logger.error(f"API call failed: {str(api_error)}")
            return f"API call failed: {str(api_error)}"

    except Exception as e:
        logger.error(f"Unexpected error: {str(e)}")
        return f"Unexpected error: {str(e)}"

def save_image(image):
    """Save the generated image in PNG format and return the path"""
    try:
        if not os.path.exists(gallery_path):
            os.makedirs(gallery_path, exist_ok=True)
        
        timestamp = datetime.now().strftime("%Y%m%d_%H%M%S")
        random_suffix = os.urandom(4).hex()
        filename = f"generated_{timestamp}_{random_suffix}.png"
        filepath = os.path.join(gallery_path, filename)
        
        if not isinstance(image, Image.Image):
            image = Image.fromarray(image)
        
        if image.mode != 'RGB':
            image = image.convert('RGB')
        
        image.save(
            filepath,
            format='PNG',
            optimize=True,
            quality=100
        )
        
        logger.info(f"Image saved successfully as PNG: {filepath}")
        return filepath
    except Exception as e:
        logger.error(f"Error in save_image: {str(e)}")
        return None

def load_gallery():
    """Load all images from the gallery directory"""
    try:
        os.makedirs(gallery_path, exist_ok=True)
        
        image_files = []
        for f in os.listdir(gallery_path):
            if f.lower().endswith(('.png', '.jpg', '.jpeg')):
                full_path = os.path.join(gallery_path, f)
                image_files.append((full_path, os.path.getmtime(full_path)))
        
        image_files.sort(key=lambda x: x[1], reverse=True)
        return [f[0] for f in image_files]
    except Exception as e:
        print(f"Error loading gallery: {str(e)}")
        return []

# CSS ์Šคํƒ€์ผ ์ •์˜
css = """
[์ด์ „์˜ CSS ์ฝ”๋“œ๋ฅผ ๊ทธ๋Œ€๋กœ ์œ ์ง€]
"""

def get_random_seed():
    return torch.randint(0, 1000000, (1,)).item()

###############################################
# ์—ฌ๊ธฐ์„œ๋ถ€ํ„ฐ Gradio UI ํ†ตํ•ฉ
###############################################

with gr.Blocks(theme=gr.themes.Soft(), css=css) as demo:
    gr.HTML('<div class="title">AI Image & Video Generator</div>')

    with gr.Tabs():
        with gr.Tab("Image Generation"):
            with gr.Row():
                with gr.Column(scale=3):
                    img_prompt = gr.Textbox(
                        label="Image Description",
                        placeholder="์ด๋ฏธ์ง€ ์„ค๋ช…์„ ์ž…๋ ฅํ•˜์„ธ์š”... (ํ•œ๊ธ€ ์ž…๋ ฅ ๊ฐ€๋Šฅ)",
                        lines=3
                    )
                    
                    with gr.Accordion("Advanced Settings", open=False):
                        with gr.Row():
                            height = gr.Slider(
                                label="Height",
                                minimum=256,
                                maximum=1152,
                                step=64,
                                value=1024
                            )
                            width = gr.Slider(
                                label="Width",
                                minimum=256,
                                maximum=1152,
                                step=64,
                                value=1024
                            )
                        
                        with gr.Row():
                            steps = gr.Slider(
                                label="Inference Steps",
                                minimum=6,
                                maximum=25,
                                step=1,
                                value=8
                            )
                            scales = gr.Slider(
                                label="Guidance Scale",
                                minimum=0.0,
                                maximum=5.0,
                                step=0.1,
                                value=3.5
                            )
                        
                        seed = gr.Number(
                            label="Seed",
                            value=get_random_seed(),
                            precision=0
                        )
                        
                        randomize_seed = gr.Button("๐ŸŽฒ Randomize Seed", elem_classes=["generate-btn"])
                    
                    generate_btn = gr.Button(
                        "โœจ Generate Image",
                        elem_classes=["generate-btn"]
                    )

                with gr.Column(scale=4):
                    img_output = gr.Image(
                        label="Generated Image",
                        type="pil",
                        format="png"
                    )
                    img_gallery = gr.Gallery(
                        label="Image Gallery",
                        show_label=True,
                        elem_id="gallery",
                        columns=[4],
                        rows=[2],
                        height="auto",
                        object_fit="cover"
                    )
                    img_gallery.value = load_gallery()

        with gr.Tab("Video Generation"):
            with gr.Row():
                with gr.Column(scale=3):
                    video_prompt = gr.Textbox(
                        label="Video Description",
                        placeholder="๋น„๋””์˜ค ์„ค๋ช…์„ ์ž…๋ ฅํ•˜์„ธ์š”... (ํ•œ๊ธ€ ์ž…๋ ฅ ๊ฐ€๋Šฅ)",
                        lines=3
                    )
                    upload_image = gr.Image(
                        type="filepath",
                        label="Upload First Frame Image"
                    )
                    video_generate_btn = gr.Button(
                        "๐ŸŽฌ Generate Video",
                        elem_classes=["generate-btn"]
                    )

                with gr.Column(scale=4):
                    video_output = gr.Video(label="Generated Video")
                    video_gallery = gr.Gallery(
                        label="Video Gallery",
                        show_label=True,
                        columns=[4],
                        rows=[2],
                        height="auto",
                        object_fit="cover"
                    )

    # ์ดํ•˜ ์ฒซ ๋ฒˆ์งธ ์ฝ”๋“œ์˜ txt2vid ๊ด€๋ จ UI๋ฅผ ํ†ตํ•ฉ
    # ์ฒซ ๋ฒˆ์งธ ์ฝ”๋“œ์˜ txt2vid UI๋ฅผ ์ถ”๊ฐ€ ํƒญ์œผ๋กœ ํ†ตํ•ฉ
    with gr.Tab("Text-to-Video Generation"):
        with gr.Column():
            txt2vid_prompt = gr.Textbox(
                label="Step 1: Enter Your Prompt (ํ•œ๊ธ€ ๋˜๋Š” ์˜์–ด)",
                placeholder="์ƒ์„ฑํ•˜๊ณ  ์‹ถ์€ ๋น„๋””์˜ค๋ฅผ ์„ค๋ช…ํ•˜์„ธ์š” (์ตœ์†Œ 50์ž)...",
                value="๊ธด ๊ฐˆ์ƒ‰ ๋จธ๋ฆฌ์™€ ๋ฐ์€ ํ”ผ๋ถ€๋ฅผ ๊ฐ€์ง„ ์—ฌ์„ฑ์ด ๊ธด ๊ธˆ๋ฐœ ๋จธ๋ฆฌ๋ฅผ ๊ฐ€์ง„ ๋‹ค๋ฅธ ์—ฌ์„ฑ์„ ํ–ฅํ•ด ๋ฏธ์†Œ ์ง“์Šต๋‹ˆ๋‹ค. ๊ฐˆ์ƒ‰ ๋จธ๋ฆฌ ์—ฌ์„ฑ์€ ๊ฒ€์€ ์žฌํ‚ท์„ ์ž…๊ณ  ์žˆ์œผ๋ฉฐ ์˜ค๋ฅธ์ชฝ ๋บจ์— ์ž‘๊ณ  ๊ฑฐ์˜ ๋ˆˆ์— ๋„์ง€ ์•Š๋Š” ์ ์ด ์žˆ์Šต๋‹ˆ๋‹ค. ์นด๋ฉ”๋ผ ์•ต๊ธ€์€ ๊ฐˆ์ƒ‰ ๋จธ๋ฆฌ ์—ฌ์„ฑ์˜ ์–ผ๊ตด์— ์ดˆ์ ์„ ๋งž์ถ˜ ํด๋กœ์ฆˆ์—…์ž…๋‹ˆ๋‹ค. ์กฐ๋ช…์€ ๋”ฐ๋œปํ•˜๊ณ  ์ž์—ฐ์Šค๋Ÿฌ์šฐ๋ฉฐ, ์•„๋งˆ๋„ ์ง€๋Š” ํ•ด์—์„œ ๋‚˜์˜ค๋Š” ๊ฒƒ ๊ฐ™์•„ ์žฅ๋ฉด์— ๋ถ€๋“œ๋Ÿฌ์šด ๋น›์„ ๋น„์ถฅ๋‹ˆ๋‹ค.",
                lines=5,
            )

            txt2vid_enhance_toggle = Toggle(
                label="Enhance Prompt",
                value=False,
                interactive=True,
            )

            txt2vid_negative_prompt = gr.Textbox(
                label="Step 2: Enter Negative Prompt",
                placeholder="๋น„๋””์˜ค์—์„œ ์›ํ•˜์ง€ ์•Š๋Š” ์š”์†Œ๋ฅผ ์„ค๋ช…ํ•˜์„ธ์š”...",
                value="low quality, worst quality, deformed, distorted, damaged, motion blur, motion artifacts, fused fingers, incorrect anatomy, strange hands, ugly",
                lines=2,
            )

            txt2vid_preset = gr.Dropdown(
                choices=[p["label"] for p in preset_options],
                value="512x512, 160 frames",
                label="Step 3.1: Choose Resolution Preset",
            )

            txt2vid_frame_rate = gr.Slider(
                label="Step 3.2: Frame Rate",
                minimum=6,
                maximum=60,
                step=1,
                value=20,
            )

            txt2vid_advanced = create_advanced_options()
            txt2vid_generate = gr.Button(
                "Step 5: Generate Video",
                variant="primary",
                size="lg",
            )

            txt2vid_output = gr.Video(label="Generated Output")

            txt2vid_preset.change(
                fn=preset_changed,
                inputs=[txt2vid_preset],
                outputs=txt2vid_advanced[3:],
            )

            txt2vid_generate.click(
                fn=generate_video_from_text_90,
                inputs=[
                    txt2vid_prompt,
                    txt2vid_enhance_toggle,
                    txt2vid_negative_prompt,
                    txt2vid_frame_rate,
                    *txt2vid_advanced,
                ],
                outputs=txt2vid_output,
                concurrency_limit=1,
                concurrency_id="generate_video",
                queue=True,
            )

    @spaces.GPU
    def process_and_save_image(height, width, steps, scales, prompt, seed):
        is_safe, translated_prompt = process_prompt_for_sd(prompt)
        if not is_safe:
            gr.Warning("๋ถ€์ ์ ˆํ•œ ๋‚ด์šฉ์ด ํฌํ•จ๋œ ํ”„๋กฌํ”„ํŠธ์ž…๋‹ˆ๋‹ค.")
            return None, load_gallery()
          
        with torch.inference_mode(), torch.autocast("cuda", dtype=torch.bfloat16), timer("inference"):
            try:
                generated_image = pipe_sd(
                    prompt=[translated_prompt],
                    generator=torch.Generator().manual_seed(int(seed)),
                    num_inference_steps=int(steps),
                    guidance_scale=float(scales),
                    height=int(height),
                    width=int(width),
                    max_sequence_length=256
                ).images[0]
                    
                if not isinstance(generated_image, Image.Image):
                    generated_image = Image.fromarray(generated_image)
                    
                if generated_image.mode != 'RGB':
                    generated_image = generated_image.convert('RGB')
                    
                img_byte_arr = io.BytesIO()
                generated_image.save(img_byte_arr, format='PNG')
                img_byte_arr = img_byte_arr.getvalue()
                
                saved_path = save_image(generated_image)
                if saved_path is None:
                    logger.warning("Failed to save generated image")
                    return None, load_gallery()
                    
                return Image.open(io.BytesIO(img_byte_arr)), load_gallery()
            except Exception as e:
                logger.error(f"Error in image generation: {str(e)}")
                return None, load_gallery()
                        

    def process_and_generate_video(image, prompt):
        is_safe, translated_prompt = process_prompt_for_sd(prompt)
        if not is_safe:
            gr.Warning("๋ถ€์ ์ ˆํ•œ ๋‚ด์šฉ์ด ํฌํ•จ๋œ ํ”„๋กฌํ”„ํŠธ์ž…๋‹ˆ๋‹ค.")
            return None
        return generate_video(image, translated_prompt)

    def update_seed():
        return get_random_seed()

    generate_btn.click(
        process_and_save_image,
        inputs=[height, width, steps, scales, img_prompt, seed],
        outputs=[img_output, img_gallery]
    )
    
    video_generate_btn.click(
        process_and_generate_video,
        inputs=[upload_image, video_prompt],
        outputs=video_output
    )
    
    randomize_seed.click(
        update_seed,
        outputs=[seed]
    )
    
    generate_btn.click(
        update_seed,
        outputs=[seed]
    )

if __name__ == "__main__":
    demo.queue(max_size=64, default_concurrency_limit=1, api_open=False).launch(share=True, show_api=False, allowed_paths=[PERSISTENT_DIR])