Spaces:
Running
on
Zero
Running
on
Zero
File size: 31,209 Bytes
0e06f3a ee64981 1504958 ee64981 1504958 ee64981 3fbccb1 ee64981 3fbccb1 ee64981 ca6d53d e47f638 719d3c9 ca6d53d 28f1c45 719d3c9 ca6d53d 719d3c9 ca6d53d 719d3c9 ca6d53d 719d3c9 ca6d53d 719d3c9 ca6d53d 719d3c9 ca6d53d 719d3c9 ee64981 719d3c9 ee64981 719d3c9 b1f2a77 719d3c9 ee64981 719d3c9 1504958 719d3c9 1504958 719d3c9 3fbccb1 719d3c9 3fbccb1 719d3c9 1504958 ee64981 719d3c9 ee64981 719d3c9 f6ed375 719d3c9 1504958 719d3c9 1b643b2 719d3c9 47f3fb4 494bc3a 719d3c9 586370e 719d3c9 586370e 494bc3a 719d3c9 494bc3a ee64981 494bc3a 719d3c9 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 |
import spaces
from functools import lru_cache
import gradio as gr
from gradio_toggle import Toggle
import torch
from huggingface_hub import snapshot_download
from transformers import CLIPProcessor, CLIPModel, pipeline
import random
from xora.models.autoencoders.causal_video_autoencoder import CausalVideoAutoencoder
from xora.models.transformers.transformer3d import Transformer3DModel
from xora.models.transformers.symmetric_patchifier import SymmetricPatchifier
from xora.schedulers.rf import RectifiedFlowScheduler
from xora.pipelines.pipeline_xora_video import XoraVideoPipeline
from transformers import T5EncoderModel, T5Tokenizer
from xora.utils.conditioning_method import ConditioningMethod
from pathlib import Path
import safetensors.torch
import json
import numpy as np
import cv2
from PIL import Image
import tempfile
import os
import gc
import csv
from datetime import datetime
from openai import OpenAI
import argparse
import time
from os import path
import shutil
from datetime import datetime
from safetensors.torch import load_file
from diffusers import FluxPipeline
from diffusers.pipelines.stable_diffusion import safety_checker
from PIL import Image
from transformers import pipeline
import replicate
import logging
import requests
from pathlib import Path
import sys
import io
# ํ๊ธ-์์ด ๋ฒ์ญ๊ธฐ ์ด๊ธฐํ
translator = pipeline("translation", model="Helsinki-NLP/opus-mt-ko-en")
torch.backends.cuda.matmul.allow_tf32 = False
torch.backends.cuda.matmul.allow_bf16_reduced_precision_reduction = False
torch.backends.cuda.matmul.allow_fp16_reduced_precision_reduction = False
torch.backends.cudnn.allow_tf32 = False
torch.backends.cudnn.deterministic = False
torch.backends.cuda.preferred_blas_library="cublas"
torch.set_float32_matmul_precision("highest")
MAX_SEED = np.iinfo(np.int32).max
# Load Hugging Face token if needed
hf_token = os.getenv("HF_TOKEN")
openai_api_key = os.getenv("OPENAI_API_KEY")
client = OpenAI(api_key=openai_api_key)
system_prompt_t2v_path = "assets/system_prompt_t2v.txt"
with open(system_prompt_t2v_path, "r") as f:
system_prompt_t2v = f.read()
# Set model download directory within Hugging Face Spaces
model_path = "asset"
commit_hash='c7c8ad4c2ddba847b94e8bfaefbd30bd8669fafc'
if not os.path.exists(model_path):
snapshot_download("Lightricks/LTX-Video", revision=commit_hash, local_dir=model_path, repo_type="model", token=hf_token)
# Global variables to load components
vae_dir = Path(model_path) / "vae"
unet_dir = Path(model_path) / "unet"
scheduler_dir = Path(model_path) / "scheduler"
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
clip_model = CLIPModel.from_pretrained("openai/clip-vit-base-patch32", cache_dir=model_path).to(torch.device("cuda:0"))
clip_processor = CLIPProcessor.from_pretrained("openai/clip-vit-base-patch32", cache_dir=model_path)
def process_prompt(prompt):
# ํ๊ธ์ด ํฌํจ๋์ด ์๋์ง ํ์ธ
if any(ord('๊ฐ') <= ord(char) <= ord('ํฃ') for char in prompt):
# ํ๊ธ์ ์์ด๋ก ๋ฒ์ญ
translated = translator(prompt)[0]['translation_text']
return translated
return prompt
def compute_clip_embedding(text=None):
inputs = clip_processor(text=text, return_tensors="pt", padding=True).to(device)
outputs = clip_model.get_text_features(**inputs)
embedding = outputs.detach().cpu().numpy().flatten().tolist()
return embedding
def load_vae(vae_dir):
vae_ckpt_path = vae_dir / "vae_diffusion_pytorch_model.safetensors"
vae_config_path = vae_dir / "config.json"
with open(vae_config_path, "r") as f:
vae_config = json.load(f)
vae = CausalVideoAutoencoder.from_config(vae_config)
vae_state_dict = safetensors.torch.load_file(vae_ckpt_path)
vae.load_state_dict(vae_state_dict)
return vae.to(device).to(torch.bfloat16)
def load_unet(unet_dir):
unet_ckpt_path = unet_dir / "unet_diffusion_pytorch_model.safetensors"
unet_config_path = unet_dir / "config.json"
transformer_config = Transformer3DModel.load_config(unet_config_path)
transformer = Transformer3DModel.from_config(transformer_config)
unet_state_dict = safetensors.torch.load_file(unet_ckpt_path)
transformer.load_state_dict(unet_state_dict, strict=True)
return transformer.to(device).to(torch.bfloat16)
def load_scheduler(scheduler_dir):
scheduler_config_path = scheduler_dir / "scheduler_config.json"
scheduler_config = RectifiedFlowScheduler.load_config(scheduler_config_path)
return RectifiedFlowScheduler.from_config(scheduler_config)
# Preset options for resolution and frame configuration
preset_options = [
{"label": "1216x704, 41 frames", "width": 1216, "height": 704, "num_frames": 41},
{"label": "1088x704, 49 frames", "width": 1088, "height": 704, "num_frames": 49},
{"label": "1056x640, 57 frames", "width": 1056, "height": 640, "num_frames": 57},
{"label": "448x448, 100 frames", "width": 448, "height": 448, "num_frames": 100},
{"label": "448x448, 200 frames", "width": 448, "height": 448, "num_frames": 200},
{"label": "448x448, 300 frames", "width": 448, "height": 448, "num_frames": 300},
{"label": "640x640, 80 frames", "width": 640, "height": 640, "num_frames": 80},
{"label": "640x640, 120 frames", "width": 640, "height": 640, "num_frames": 120},
{"label": "768x768, 64 frames", "width": 768, "height": 768, "num_frames": 64},
{"label": "768x768, 90 frames", "width": 768, "height": 768, "num_frames": 90},
{"label": "720x720, 64 frames", "width": 768, "height": 768, "num_frames": 64},
{"label": "720x720, 100 frames", "width": 768, "height": 768, "num_frames": 100},
{"label": "768x512, 97 frames", "width": 768, "height": 512, "num_frames": 97},
{"label": "512x512, 160 frames", "width": 512, "height": 512, "num_frames": 160},
{"label": "512x512, 200 frames", "width": 512, "height": 512, "num_frames": 200},
]
def preset_changed(preset):
if preset != "Custom":
selected = next(item for item in preset_options if item["label"] == preset)
return (
selected["height"],
selected["width"],
selected["num_frames"],
gr.update(visible=False),
gr.update(visible=False),
gr.update(visible=False),
)
else:
return (
None,
None,
None,
gr.update(visible=True),
gr.update(visible=True),
gr.update(visible=True),
)
# Load models
vae = load_vae(vae_dir)
unet = load_unet(unet_dir)
scheduler = load_scheduler(scheduler_dir)
patchifier = SymmetricPatchifier(patch_size=1)
text_encoder = T5EncoderModel.from_pretrained("PixArt-alpha/PixArt-XL-2-1024-MS", subfolder="text_encoder").to(torch.device("cuda:0"))
tokenizer = T5Tokenizer.from_pretrained("PixArt-alpha/PixArt-XL-2-1024-MS", subfolder="tokenizer")
pipeline_video = XoraVideoPipeline(
transformer=unet,
patchifier=patchifier,
text_encoder=text_encoder,
tokenizer=tokenizer,
scheduler=scheduler,
vae=vae,
).to(torch.device("cuda:0"))
def enhance_prompt_if_enabled(prompt, enhance_toggle):
if not enhance_toggle:
print("Enhance toggle is off, Prompt: ", prompt)
return prompt
messages = [
{"role": "system", "content": system_prompt_t2v},
{"role": "user", "content": prompt},
]
try:
response = client.chat.completions.create(
model="gpt-4-mini",
messages=messages,
max_tokens=200,
)
print("Enhanced Prompt: ", response.choices[0].message.content.strip())
return response.choices[0].message.content.strip()
except Exception as e:
print(f"Error: {e}")
return prompt
@spaces.GPU(duration=90)
def generate_video_from_text_90(
prompt="",
enhance_prompt_toggle=False,
negative_prompt="",
frame_rate=25,
seed=random.randint(0, MAX_SEED),
num_inference_steps=30,
guidance_scale=3.2,
height=768,
width=768,
num_frames=60,
progress=gr.Progress(),
):
# ํ๋กฌํํธ ์ ์ฒ๋ฆฌ (ํ๊ธ -> ์์ด)
prompt = process_prompt(prompt)
negative_prompt = process_prompt(negative_prompt)
if len(prompt.strip()) < 50:
raise gr.Error(
"Prompt must be at least 50 characters long. Please provide more details for the best results.",
duration=5,
)
prompt = enhance_prompt_if_enabled(prompt, enhance_prompt_toggle)
sample = {
"prompt": prompt,
"prompt_attention_mask": None,
"negative_prompt": negative_prompt,
"negative_prompt_attention_mask": None,
"media_items": None,
}
generator = torch.Generator(device="cuda").manual_seed(seed)
def gradio_progress_callback(self, step, timestep, kwargs):
progress((step + 1) / num_inference_steps)
try:
with torch.no_grad():
images = pipeline_video(
num_inference_steps=num_inference_steps,
num_images_per_prompt=1,
guidance_scale=guidance_scale,
generator=generator,
output_type="pt",
height=height,
width=width,
num_frames=num_frames,
frame_rate=frame_rate,
**sample,
is_video=True,
vae_per_channel_normalize=True,
conditioning_method=ConditioningMethod.UNCONDITIONAL,
mixed_precision=True,
callback_on_step_end=gradio_progress_callback,
).images
except Exception as e:
raise gr.Error(
f"An error occurred while generating the video. Please try again. Error: {e}",
duration=5,
)
finally:
torch.cuda.empty_cache()
gc.collect()
output_path = tempfile.mktemp(suffix=".mp4")
video_np = images.squeeze(0).permute(1, 2, 3, 0).cpu().float().numpy()
video_np = (video_np * 255).astype(np.uint8)
height, width = video_np.shape[1:3]
out = cv2.VideoWriter(output_path, cv2.VideoWriter_fourcc(*"mp4v"), frame_rate, (width, height))
for frame in video_np[..., ::-1]:
out.write(frame)
out.release()
del images
del video_np
torch.cuda.empty_cache()
return output_path
def create_advanced_options():
with gr.Accordion("Step 4: Advanced Options (Optional)", open=False):
seed = gr.Slider(label="4.1 Seed", minimum=0, maximum=1000000, step=1, value=646373)
inference_steps = gr.Slider(label="4.2 Inference Steps", minimum=5, maximum=150, step=5, value=40)
guidance_scale = gr.Slider(label="4.3 Guidance Scale", minimum=1.0, maximum=10.0, step=0.1, value=4.2)
height_slider = gr.Slider(
label="4.4 Height",
minimum=256,
maximum=1024,
step=64,
value=768,
visible=False,
)
width_slider = gr.Slider(
label="4.5 Width",
minimum=256,
maximum=1024,
step=64,
value=768,
visible=False,
)
num_frames_slider = gr.Slider(
label="4.5 Number of Frames",
minimum=1,
maximum=500,
step=1,
value=60,
visible=False,
)
return [
seed,
inference_steps,
guidance_scale,
height_slider,
width_slider,
num_frames_slider,
]
###############################################
# ์ฌ๊ธฐ์๋ถํฐ ๋ ๋ฒ์งธ ์ฝ๋ ํตํฉ ์ ์ฉ
###############################################
import argparse
import time
from os import path
import shutil
from safetensors.torch import load_file
from diffusers import FluxPipeline
from diffusers.pipelines.stable_diffusion import safety_checker
import replicate
import logging
import requests
from pathlib import Path
import sys
import io
# ๋ก๊น
์ค์
logging.basicConfig(level=logging.INFO)
logger = logging.getLogger(__name__)
# Setup and initialization code
cache_path = path.join(path.dirname(path.abspath(__file__)), "models")
PERSISTENT_DIR = os.environ.get("PERSISTENT_DIR", ".")
gallery_path = path.join(PERSISTENT_DIR, "gallery")
video_gallery_path = path.join(PERSISTENT_DIR, "video_gallery")
# API ์ค์
CATBOX_USER_HASH = "e7a96fc68dd4c7d2954040cd5"
REPLICATE_API_TOKEN = os.getenv("API_KEY")
# ํ๊ฒฝ ๋ณ์ ์ค์
os.environ["TRANSFORMERS_CACHE"] = cache_path
os.environ["HF_HUB_CACHE"] = cache_path
os.environ["HF_HOME"] = cache_path
# CUDA ์ค์
torch.backends.cuda.matmul.allow_tf32 = True
# ๋ฒ์ญ๊ธฐ ์ด๊ธฐํ (์ด๋ฏธ ์์์ translator ์ ์ธ๋จ, ์ค๋ณต ์ ์ธ)
translator2 = pipeline("translation", model="Helsinki-NLP/opus-mt-ko-en") # ๋ ๋ฒ์งธ ์ฝ๋์์๋ ์ ์ธ. ๋๋ฝ์์ด ์ถ๋ ฅํ๊ธฐ ์ํด ์ถ๊ฐ.
# ๋๋ ํ ๋ฆฌ ์์ฑ
for dir_path in [gallery_path, video_gallery_path]:
if not path.exists(dir_path):
os.makedirs(dir_path, exist_ok=True)
def check_api_key():
"""API ํค ํ์ธ ๋ฐ ์ค์ """
if not REPLICATE_API_TOKEN:
logger.error("Replicate API key not found")
return False
os.environ["REPLICATE_API_TOKEN"] = REPLICATE_API_TOKEN
logger.info("Replicate API token set successfully")
return True
def translate_if_korean(text):
"""ํ๊ธ์ด ํฌํจ๋ ๊ฒฝ์ฐ ์์ด๋ก ๋ฒ์ญ"""
if any(ord(char) >= 0xAC00 and ord(char) <= 0xD7A3 for char in text):
translation = translator2(text)[0]['translation_text']
return translation
return text
def filter_prompt(prompt):
inappropriate_keywords = [
"nude", "naked", "nsfw", "porn", "sex", "explicit", "adult", "xxx",
"erotic", "sensual", "seductive", "provocative", "intimate",
"violence", "gore", "blood", "death", "kill", "murder", "torture",
"drug", "suicide", "abuse", "hate", "discrimination"
]
prompt_lower = prompt.lower()
for keyword in inappropriate_keywords:
if keyword in prompt_lower:
return False, "๋ถ์ ์ ํ ๋ด์ฉ์ด ํฌํจ๋ ํ๋กฌํํธ์
๋๋ค."
return True, prompt
def process_prompt_for_sd(prompt):
"""ํ๋กฌํํธ ์ ์ฒ๋ฆฌ (๋ฒ์ญ ๋ฐ ํํฐ๋ง)"""
translated_prompt = translate_if_korean(prompt)
is_safe, filtered_prompt = filter_prompt(translated_prompt)
return is_safe, filtered_prompt
class timer:
def __init__(self, method_name="timed process"):
self.method = method_name
def __enter__(self):
self.start = time.time()
print(f"{self.method} starts")
def __exit__(self, exc_type, exc_val, exc_tb):
end = time.time()
print(f"{self.method} took {str(round(end - self.start, 2))}s")
# Model initialization
if not path.exists(cache_path):
os.makedirs(cache_path, exist_ok=True)
pipe_sd = FluxPipeline.from_pretrained("black-forest-labs/FLUX.1-dev", torch_dtype=torch.bfloat16)
pipe_sd.load_lora_weights(hf_hub_download("ByteDance/Hyper-SD", "Hyper-FLUX.1-dev-8steps-lora.safetensors"))
pipe_sd.fuse_lora(lora_scale=0.125)
pipe_sd.to(device="cuda", dtype=torch.bfloat16)
pipe_sd.safety_checker = safety_checker.StableDiffusionSafetyChecker.from_pretrained("CompVis/stable-diffusion-safety-checker")
def upload_to_catbox(image_path):
"""catbox.moe API๋ฅผ ์ฌ์ฉํ์ฌ ์ด๋ฏธ์ง ์
๋ก๋"""
try:
logger.info(f"Preparing to upload image: {image_path}")
url = "https://catbox.moe/user/api.php"
file_extension = Path(image_path).suffix.lower()
if file_extension not in ['.jpg', '.jpeg', '.png', '.gif']:
logger.error(f"Unsupported file type: {file_extension}")
return None
files = {
'fileToUpload': (
os.path.basename(image_path),
open(image_path, 'rb'),
'image/jpeg' if file_extension in ['.jpg', '.jpeg'] else 'image/png'
)
}
data = {
'reqtype': 'fileupload',
'userhash': CATBOX_USER_HASH
}
response = requests.post(url, files=files, data=data)
if response.status_code == 200 and response.text.startswith('http'):
image_url = response.text
logger.info(f"Image uploaded successfully: {image_url}")
return image_url
else:
raise Exception(f"Upload failed: {response.text}")
except Exception as e:
logger.error(f"Image upload error: {str(e)}")
return None
def add_watermark(video_path):
"""OpenCV๋ฅผ ์ฌ์ฉํ์ฌ ๋น๋์ค์ ์ํฐ๋งํฌ ์ถ๊ฐ"""
try:
cap = cv2.VideoCapture(video_path)
width = int(cap.get(cv2.CAP_PROP_FRAME_WIDTH))
height = int(cap.get(cv2.CAP_PROP_FRAME_HEIGHT))
fps = int(cap.get(cv2.CAP_PROP_FPS))
text = "GiniGEN.AI"
font = cv2.FONT_HERSHEY_SIMPLEX
font_scale = height * 0.05 / 30
thickness = 2
color = (255, 255, 255)
(text_width, text_height), _ = cv2.getTextSize(text, font, font_scale, thickness)
margin = int(height * 0.02)
x_pos = width - text_width - margin
y_pos = height - margin
output_path = "watermarked_output.mp4"
fourcc = cv2.VideoWriter_fourcc(*'mp4v')
out = cv2.VideoWriter(output_path, fourcc, fps, (width, height))
while cap.isOpened():
ret, frame = cap.read()
if not ret:
break
cv2.putText(frame, text, (x_pos, y_pos), font, font_scale, color, thickness)
out.write(frame)
cap.release()
out.release()
return output_path
except Exception as e:
logger.error(f"Error adding watermark: {str(e)}")
return video_path
def generate_video(image, prompt):
logger.info("Starting video generation")
try:
if not check_api_key():
return "Replicate API key not properly configured"
if not image:
logger.error("No image provided")
return "Please upload an image"
image_url = upload_to_catbox(image)
if not image_url:
return "Failed to upload image"
input_data = {
"prompt": prompt,
"first_frame_image": image_url
}
try:
replicate.Client(api_token=REPLICATE_API_TOKEN)
output = replicate.run(
"minimax/video-01-live",
input=input_data
)
temp_file = "temp_output.mp4"
if hasattr(output, 'read'):
with open(temp_file, "wb") as file:
file.write(output.read())
elif isinstance(output, str):
response = requests.get(output)
with open(temp_file, "wb") as file:
file.write(response.content)
final_video = add_watermark(temp_file)
return final_video
except Exception as api_error:
logger.error(f"API call failed: {str(api_error)}")
return f"API call failed: {str(api_error)}"
except Exception as e:
logger.error(f"Unexpected error: {str(e)}")
return f"Unexpected error: {str(e)}"
def save_image(image):
"""Save the generated image in PNG format and return the path"""
try:
if not os.path.exists(gallery_path):
os.makedirs(gallery_path, exist_ok=True)
timestamp = datetime.now().strftime("%Y%m%d_%H%M%S")
random_suffix = os.urandom(4).hex()
filename = f"generated_{timestamp}_{random_suffix}.png"
filepath = os.path.join(gallery_path, filename)
if not isinstance(image, Image.Image):
image = Image.fromarray(image)
if image.mode != 'RGB':
image = image.convert('RGB')
image.save(
filepath,
format='PNG',
optimize=True,
quality=100
)
logger.info(f"Image saved successfully as PNG: {filepath}")
return filepath
except Exception as e:
logger.error(f"Error in save_image: {str(e)}")
return None
def load_gallery():
"""Load all images from the gallery directory"""
try:
os.makedirs(gallery_path, exist_ok=True)
image_files = []
for f in os.listdir(gallery_path):
if f.lower().endswith(('.png', '.jpg', '.jpeg')):
full_path = os.path.join(gallery_path, f)
image_files.append((full_path, os.path.getmtime(full_path)))
image_files.sort(key=lambda x: x[1], reverse=True)
return [f[0] for f in image_files]
except Exception as e:
print(f"Error loading gallery: {str(e)}")
return []
# CSS ์คํ์ผ ์ ์
css = """
[์ด์ ์ CSS ์ฝ๋๋ฅผ ๊ทธ๋๋ก ์ ์ง]
"""
def get_random_seed():
return torch.randint(0, 1000000, (1,)).item()
###############################################
# ์ฌ๊ธฐ์๋ถํฐ Gradio UI ํตํฉ
###############################################
with gr.Blocks(theme=gr.themes.Soft(), css=css) as demo:
gr.HTML('<div class="title">AI Image & Video Generator</div>')
with gr.Tabs():
with gr.Tab("Image Generation"):
with gr.Row():
with gr.Column(scale=3):
img_prompt = gr.Textbox(
label="Image Description",
placeholder="์ด๋ฏธ์ง ์ค๋ช
์ ์
๋ ฅํ์ธ์... (ํ๊ธ ์
๋ ฅ ๊ฐ๋ฅ)",
lines=3
)
with gr.Accordion("Advanced Settings", open=False):
with gr.Row():
height = gr.Slider(
label="Height",
minimum=256,
maximum=1152,
step=64,
value=1024
)
width = gr.Slider(
label="Width",
minimum=256,
maximum=1152,
step=64,
value=1024
)
with gr.Row():
steps = gr.Slider(
label="Inference Steps",
minimum=6,
maximum=25,
step=1,
value=8
)
scales = gr.Slider(
label="Guidance Scale",
minimum=0.0,
maximum=5.0,
step=0.1,
value=3.5
)
seed = gr.Number(
label="Seed",
value=get_random_seed(),
precision=0
)
randomize_seed = gr.Button("๐ฒ Randomize Seed", elem_classes=["generate-btn"])
generate_btn = gr.Button(
"โจ Generate Image",
elem_classes=["generate-btn"]
)
with gr.Column(scale=4):
img_output = gr.Image(
label="Generated Image",
type="pil",
format="png"
)
img_gallery = gr.Gallery(
label="Image Gallery",
show_label=True,
elem_id="gallery",
columns=[4],
rows=[2],
height="auto",
object_fit="cover"
)
img_gallery.value = load_gallery()
with gr.Tab("Video Generation"):
with gr.Row():
with gr.Column(scale=3):
video_prompt = gr.Textbox(
label="Video Description",
placeholder="๋น๋์ค ์ค๋ช
์ ์
๋ ฅํ์ธ์... (ํ๊ธ ์
๋ ฅ ๊ฐ๋ฅ)",
lines=3
)
upload_image = gr.Image(
type="filepath",
label="Upload First Frame Image"
)
video_generate_btn = gr.Button(
"๐ฌ Generate Video",
elem_classes=["generate-btn"]
)
with gr.Column(scale=4):
video_output = gr.Video(label="Generated Video")
video_gallery = gr.Gallery(
label="Video Gallery",
show_label=True,
columns=[4],
rows=[2],
height="auto",
object_fit="cover"
)
# ์ดํ ์ฒซ ๋ฒ์งธ ์ฝ๋์ txt2vid ๊ด๋ จ UI๋ฅผ ํตํฉ
# ์ฒซ ๋ฒ์งธ ์ฝ๋์ txt2vid UI๋ฅผ ์ถ๊ฐ ํญ์ผ๋ก ํตํฉ
with gr.Tab("Text-to-Video Generation"):
with gr.Column():
txt2vid_prompt = gr.Textbox(
label="Step 1: Enter Your Prompt (ํ๊ธ ๋๋ ์์ด)",
placeholder="์์ฑํ๊ณ ์ถ์ ๋น๋์ค๋ฅผ ์ค๋ช
ํ์ธ์ (์ต์ 50์)...",
value="๊ธด ๊ฐ์ ๋จธ๋ฆฌ์ ๋ฐ์ ํผ๋ถ๋ฅผ ๊ฐ์ง ์ฌ์ฑ์ด ๊ธด ๊ธ๋ฐ ๋จธ๋ฆฌ๋ฅผ ๊ฐ์ง ๋ค๋ฅธ ์ฌ์ฑ์ ํฅํด ๋ฏธ์ ์ง์ต๋๋ค. ๊ฐ์ ๋จธ๋ฆฌ ์ฌ์ฑ์ ๊ฒ์ ์ฌํท์ ์
๊ณ ์์ผ๋ฉฐ ์ค๋ฅธ์ชฝ ๋บจ์ ์๊ณ ๊ฑฐ์ ๋์ ๋์ง ์๋ ์ ์ด ์์ต๋๋ค. ์นด๋ฉ๋ผ ์ต๊ธ์ ๊ฐ์ ๋จธ๋ฆฌ ์ฌ์ฑ์ ์ผ๊ตด์ ์ด์ ์ ๋ง์ถ ํด๋ก์ฆ์
์
๋๋ค. ์กฐ๋ช
์ ๋ฐ๋ปํ๊ณ ์์ฐ์ค๋ฌ์ฐ๋ฉฐ, ์๋ง๋ ์ง๋ ํด์์ ๋์ค๋ ๊ฒ ๊ฐ์ ์ฅ๋ฉด์ ๋ถ๋๋ฌ์ด ๋น์ ๋น์ถฅ๋๋ค.",
lines=5,
)
txt2vid_enhance_toggle = Toggle(
label="Enhance Prompt",
value=False,
interactive=True,
)
txt2vid_negative_prompt = gr.Textbox(
label="Step 2: Enter Negative Prompt",
placeholder="๋น๋์ค์์ ์ํ์ง ์๋ ์์๋ฅผ ์ค๋ช
ํ์ธ์...",
value="low quality, worst quality, deformed, distorted, damaged, motion blur, motion artifacts, fused fingers, incorrect anatomy, strange hands, ugly",
lines=2,
)
txt2vid_preset = gr.Dropdown(
choices=[p["label"] for p in preset_options],
value="512x512, 160 frames",
label="Step 3.1: Choose Resolution Preset",
)
txt2vid_frame_rate = gr.Slider(
label="Step 3.2: Frame Rate",
minimum=6,
maximum=60,
step=1,
value=20,
)
txt2vid_advanced = create_advanced_options()
txt2vid_generate = gr.Button(
"Step 5: Generate Video",
variant="primary",
size="lg",
)
txt2vid_output = gr.Video(label="Generated Output")
txt2vid_preset.change(
fn=preset_changed,
inputs=[txt2vid_preset],
outputs=txt2vid_advanced[3:],
)
txt2vid_generate.click(
fn=generate_video_from_text_90,
inputs=[
txt2vid_prompt,
txt2vid_enhance_toggle,
txt2vid_negative_prompt,
txt2vid_frame_rate,
*txt2vid_advanced,
],
outputs=txt2vid_output,
concurrency_limit=1,
concurrency_id="generate_video",
queue=True,
)
@spaces.GPU
def process_and_save_image(height, width, steps, scales, prompt, seed):
is_safe, translated_prompt = process_prompt_for_sd(prompt)
if not is_safe:
gr.Warning("๋ถ์ ์ ํ ๋ด์ฉ์ด ํฌํจ๋ ํ๋กฌํํธ์
๋๋ค.")
return None, load_gallery()
with torch.inference_mode(), torch.autocast("cuda", dtype=torch.bfloat16), timer("inference"):
try:
generated_image = pipe_sd(
prompt=[translated_prompt],
generator=torch.Generator().manual_seed(int(seed)),
num_inference_steps=int(steps),
guidance_scale=float(scales),
height=int(height),
width=int(width),
max_sequence_length=256
).images[0]
if not isinstance(generated_image, Image.Image):
generated_image = Image.fromarray(generated_image)
if generated_image.mode != 'RGB':
generated_image = generated_image.convert('RGB')
img_byte_arr = io.BytesIO()
generated_image.save(img_byte_arr, format='PNG')
img_byte_arr = img_byte_arr.getvalue()
saved_path = save_image(generated_image)
if saved_path is None:
logger.warning("Failed to save generated image")
return None, load_gallery()
return Image.open(io.BytesIO(img_byte_arr)), load_gallery()
except Exception as e:
logger.error(f"Error in image generation: {str(e)}")
return None, load_gallery()
def process_and_generate_video(image, prompt):
is_safe, translated_prompt = process_prompt_for_sd(prompt)
if not is_safe:
gr.Warning("๋ถ์ ์ ํ ๋ด์ฉ์ด ํฌํจ๋ ํ๋กฌํํธ์
๋๋ค.")
return None
return generate_video(image, translated_prompt)
def update_seed():
return get_random_seed()
generate_btn.click(
process_and_save_image,
inputs=[height, width, steps, scales, img_prompt, seed],
outputs=[img_output, img_gallery]
)
video_generate_btn.click(
process_and_generate_video,
inputs=[upload_image, video_prompt],
outputs=video_output
)
randomize_seed.click(
update_seed,
outputs=[seed]
)
generate_btn.click(
update_seed,
outputs=[seed]
)
if __name__ == "__main__":
demo.queue(max_size=64, default_concurrency_limit=1, api_open=False).launch(share=True, show_api=False, allowed_paths=[PERSISTENT_DIR])
|