Spaces:
Running
on
Zero
Running
on
Zero
Update app.py
Browse files
app.py
CHANGED
@@ -51,21 +51,22 @@ def load_gallery_images():
|
|
51 |
|
52 |
return [(os.path.join("gallery", row[2]), f"{row[0]}: {row[1]}") for row in rows]
|
53 |
|
54 |
-
#
|
55 |
-
translator = pipeline("translation", model="Helsinki-NLP/opus-mt-ko-en")
|
56 |
|
57 |
-
# ํ๋กฌํํธ ์ฒ๋ฆฌ ํจ์
|
58 |
def process_prompt(prompt):
|
59 |
if any('\u3131' <= char <= '\u3163' or '\uac00' <= char <= '\ud7a3' for char in prompt):
|
60 |
translated = translator(prompt)[0]['translation_text']
|
61 |
return prompt, translated
|
62 |
return prompt, prompt
|
63 |
|
|
|
64 |
KEY_JSON = os.getenv("KEY_JSON")
|
65 |
with open(KEY_JSON, 'r') as f:
|
66 |
loras = json.load(f)
|
67 |
|
68 |
-
#
|
69 |
dtype = torch.bfloat16
|
70 |
device = "cuda" if torch.cuda.is_available() else "cpu"
|
71 |
base_model = "black-forest-labs/FLUX.1-dev"
|
@@ -136,6 +137,7 @@ def generate_image(prompt_mash, steps, seed, cfg_scale, width, height, lora_scal
|
|
136 |
):
|
137 |
yield img
|
138 |
|
|
|
139 |
def run_lora(prompt, cfg_scale, steps, selected_index, randomize_seed, seed, width, height, lora_scale, progress=gr.Progress(track_tqdm=True)):
|
140 |
if selected_index is None:
|
141 |
raise gr.Error("์งํํ๊ธฐ ์ ์ LoRA๋ฅผ ์ ํํด์ผ ํฉ๋๋ค.")
|
@@ -159,21 +161,21 @@ def run_lora(prompt, cfg_scale, steps, selected_index, randomize_seed, seed, wid
|
|
159 |
with calculateDuration("LoRA ์ธ๋ก๋"):
|
160 |
pipe.unload_lora_weights()
|
161 |
|
162 |
-
#
|
163 |
with calculateDuration(f"{selected_lora['title']}์ LoRA ๊ฐ์ค์น ๋ก๋"):
|
164 |
if "weights" in selected_lora:
|
165 |
pipe.load_lora_weights(lora_path, weight_name=selected_lora["weights"])
|
166 |
else:
|
167 |
pipe.load_lora_weights(lora_path)
|
168 |
|
169 |
-
#
|
170 |
with calculateDuration("์๋ ๋ฌด์์ํ"):
|
171 |
if randomize_seed:
|
172 |
seed = random.randint(0, MAX_SEED)
|
173 |
|
174 |
image_generator = generate_image(prompt_mash, steps, seed, cfg_scale, width, height, lora_scale, progress)
|
175 |
|
176 |
-
#
|
177 |
final_image = None
|
178 |
step_counter = 0
|
179 |
for image in image_generator:
|
@@ -187,32 +189,31 @@ def run_lora(prompt, cfg_scale, steps, selected_index, randomize_seed, seed, wid
|
|
187 |
|
188 |
yield final_image, seed, gr.update(value=progress_bar, visible=False), original_prompt, english_prompt
|
189 |
|
190 |
-
|
191 |
def get_huggingface_safetensors(link):
|
192 |
-
|
193 |
-
|
194 |
-
|
195 |
-
|
196 |
-
|
197 |
-
|
198 |
-
|
199 |
-
|
200 |
-
|
201 |
-
|
202 |
-
|
203 |
-
|
204 |
-
|
205 |
-
|
206 |
-
|
207 |
-
|
208 |
-
|
209 |
-
|
210 |
-
|
211 |
-
|
212 |
-
|
213 |
-
|
214 |
-
|
215 |
-
|
216 |
|
217 |
def check_custom_model(link):
|
218 |
if(link.startswith("https://")):
|
@@ -263,7 +264,6 @@ def add_custom_lora(custom_lora):
|
|
263 |
def remove_custom_lora():
|
264 |
return gr.update(visible=False), gr.update(visible=False), gr.update(), "", None, ""
|
265 |
|
266 |
-
|
267 |
run_lora.zerogpu = True
|
268 |
|
269 |
css = """
|
@@ -272,62 +272,6 @@ footer {
|
|
272 |
}
|
273 |
"""
|
274 |
|
275 |
-
|
276 |
-
def create_snow_effect():
|
277 |
-
# CSS ์คํ์ผ ์ ์
|
278 |
-
snow_css = """
|
279 |
-
@keyframes snowfall {
|
280 |
-
0% {
|
281 |
-
transform: translateY(-10vh) translateX(0);
|
282 |
-
opacity: 1;
|
283 |
-
}
|
284 |
-
100% {
|
285 |
-
transform: translateY(100vh) translateX(100px);
|
286 |
-
opacity: 0.3;
|
287 |
-
}
|
288 |
-
}
|
289 |
-
.snowflake {
|
290 |
-
position: fixed;
|
291 |
-
color: white;
|
292 |
-
font-size: 1.5em;
|
293 |
-
user-select: none;
|
294 |
-
z-index: 1000;
|
295 |
-
pointer-events: none;
|
296 |
-
animation: snowfall linear infinite;
|
297 |
-
}
|
298 |
-
"""
|
299 |
-
|
300 |
-
# JavaScript ์ฝ๋ ์ ์
|
301 |
-
snow_js = """
|
302 |
-
function createSnowflake() {
|
303 |
-
const snowflake = document.createElement('div');
|
304 |
-
snowflake.innerHTML = 'โ';
|
305 |
-
snowflake.className = 'snowflake';
|
306 |
-
snowflake.style.left = Math.random() * 100 + 'vw';
|
307 |
-
snowflake.style.animationDuration = Math.random() * 3 + 2 + 's';
|
308 |
-
snowflake.style.opacity = Math.random();
|
309 |
-
document.body.appendChild(snowflake);
|
310 |
-
|
311 |
-
setTimeout(() => {
|
312 |
-
snowflake.remove();
|
313 |
-
}, 5000);
|
314 |
-
}
|
315 |
-
setInterval(createSnowflake, 200);
|
316 |
-
"""
|
317 |
-
|
318 |
-
# CSS์ JavaScript๋ฅผ ๊ฒฐํฉํ HTML
|
319 |
-
snow_html = f"""
|
320 |
-
<style>
|
321 |
-
{snow_css}
|
322 |
-
</style>
|
323 |
-
<script>
|
324 |
-
{snow_js}
|
325 |
-
</script>
|
326 |
-
"""
|
327 |
-
|
328 |
-
return gr.HTML(snow_html)
|
329 |
-
|
330 |
-
|
331 |
# ๊ฐค๋ฌ๋ฆฌ ๋๋ ํ ๋ฆฌ ์์ฑ
|
332 |
if not os.path.exists('gallery'):
|
333 |
os.makedirs('gallery')
|
@@ -335,8 +279,7 @@ if not os.path.exists('gallery'):
|
|
335 |
# ๋ฐ์ดํฐ๋ฒ ์ด์ค ์ด๊ธฐํ
|
336 |
init_db()
|
337 |
|
338 |
-
with gr.Blocks(theme=
|
339 |
-
create_snow_effect()
|
340 |
selected_index = gr.State(None)
|
341 |
|
342 |
with gr.Tabs():
|
@@ -398,11 +341,13 @@ with gr.Blocks(theme="Nymbo/Nymbo_Theme", css=css) as app:
|
|
398 |
inputs=[width, height],
|
399 |
outputs=[prompt, selected_info, selected_index, width, height]
|
400 |
)
|
|
|
401 |
custom_lora.input(
|
402 |
add_custom_lora,
|
403 |
inputs=[custom_lora],
|
404 |
outputs=[custom_lora_info, custom_lora_button, gallery, selected_info, selected_index, prompt]
|
405 |
)
|
|
|
406 |
custom_lora_button.click(
|
407 |
remove_custom_lora,
|
408 |
outputs=[custom_lora_info, custom_lora_button, gallery, selected_info, selected_index, custom_lora]
|
@@ -411,7 +356,8 @@ with gr.Blocks(theme="Nymbo/Nymbo_Theme", css=css) as app:
|
|
411 |
gr.on(
|
412 |
triggers=[generate_button.click, prompt.submit],
|
413 |
fn=run_lora,
|
414 |
-
inputs=[prompt, cfg_scale, steps, selected_index, randomize_seed,
|
|
|
415 |
outputs=[result, seed, progress_bar, original_prompt_display, english_prompt_display]
|
416 |
)
|
417 |
|
|
|
51 |
|
52 |
return [(os.path.join("gallery", row[2]), f"{row[0]}: {row[1]}") for row in rows]
|
53 |
|
54 |
+
# CPU์์ ์คํ๋๋ ๋ฒ์ญ๊ธฐ ์ด๊ธฐํ
|
55 |
+
translator = pipeline("translation", model="Helsinki-NLP/opus-mt-ko-en", device=-1)
|
56 |
|
57 |
+
# ํ๋กฌํํธ ์ฒ๋ฆฌ ํจ์
|
58 |
def process_prompt(prompt):
|
59 |
if any('\u3131' <= char <= '\u3163' or '\uac00' <= char <= '\ud7a3' for char in prompt):
|
60 |
translated = translator(prompt)[0]['translation_text']
|
61 |
return prompt, translated
|
62 |
return prompt, prompt
|
63 |
|
64 |
+
|
65 |
KEY_JSON = os.getenv("KEY_JSON")
|
66 |
with open(KEY_JSON, 'r') as f:
|
67 |
loras = json.load(f)
|
68 |
|
69 |
+
# ๊ธฐ๋ณธ ๋ชจ๋ธ ์ด๊ธฐํ
|
70 |
dtype = torch.bfloat16
|
71 |
device = "cuda" if torch.cuda.is_available() else "cpu"
|
72 |
base_model = "black-forest-labs/FLUX.1-dev"
|
|
|
137 |
):
|
138 |
yield img
|
139 |
|
140 |
+
@spaces.GPU(duration=70)
|
141 |
def run_lora(prompt, cfg_scale, steps, selected_index, randomize_seed, seed, width, height, lora_scale, progress=gr.Progress(track_tqdm=True)):
|
142 |
if selected_index is None:
|
143 |
raise gr.Error("์งํํ๊ธฐ ์ ์ LoRA๋ฅผ ์ ํํด์ผ ํฉ๋๋ค.")
|
|
|
161 |
with calculateDuration("LoRA ์ธ๋ก๋"):
|
162 |
pipe.unload_lora_weights()
|
163 |
|
164 |
+
# LoRA ๊ฐ์ค์น ๋ก๋
|
165 |
with calculateDuration(f"{selected_lora['title']}์ LoRA ๊ฐ์ค์น ๋ก๋"):
|
166 |
if "weights" in selected_lora:
|
167 |
pipe.load_lora_weights(lora_path, weight_name=selected_lora["weights"])
|
168 |
else:
|
169 |
pipe.load_lora_weights(lora_path)
|
170 |
|
171 |
+
# ์ฌํ์ฑ์ ์ํ ์๋ ์ค์
|
172 |
with calculateDuration("์๋ ๋ฌด์์ํ"):
|
173 |
if randomize_seed:
|
174 |
seed = random.randint(0, MAX_SEED)
|
175 |
|
176 |
image_generator = generate_image(prompt_mash, steps, seed, cfg_scale, width, height, lora_scale, progress)
|
177 |
|
178 |
+
# ์ต์ข
์ด๋ฏธ์ง๋ฅผ ์ป๊ธฐ ์ํด ์ ๋๋ ์ดํฐ ์๋น
|
179 |
final_image = None
|
180 |
step_counter = 0
|
181 |
for image in image_generator:
|
|
|
189 |
|
190 |
yield final_image, seed, gr.update(value=progress_bar, visible=False), original_prompt, english_prompt
|
191 |
|
|
|
192 |
def get_huggingface_safetensors(link):
|
193 |
+
split_link = link.split("/")
|
194 |
+
if(len(split_link) == 2):
|
195 |
+
model_card = ModelCard.load(link)
|
196 |
+
base_model = model_card.data.get("base_model")
|
197 |
+
print(base_model)
|
198 |
+
if((base_model != "black-forest-labs/FLUX.1-dev") and (base_model != "black-forest-labs/FLUX.1-schnell")):
|
199 |
+
raise Exception("Not a FLUX LoRA!")
|
200 |
+
image_path = model_card.data.get("widget", [{}])[0].get("output", {}).get("url", None)
|
201 |
+
trigger_word = model_card.data.get("instance_prompt", "")
|
202 |
+
image_url = f"https://huggingface.co/{link}/resolve/main/{image_path}" if image_path else None
|
203 |
+
fs = HfFileSystem()
|
204 |
+
try:
|
205 |
+
list_of_files = fs.ls(link, detail=False)
|
206 |
+
for file in list_of_files:
|
207 |
+
if(file.endswith(".safetensors")):
|
208 |
+
safetensors_name = file.split("/")[-1]
|
209 |
+
if (not image_url and file.lower().endswith((".jpg", ".jpeg", ".png", ".webp"))):
|
210 |
+
image_elements = file.split("/")
|
211 |
+
image_url = f"https://huggingface.co/{link}/resolve/main/{image_elements[-1]}"
|
212 |
+
except Exception as e:
|
213 |
+
print(e)
|
214 |
+
gr.Warning(f"You didn't include a link neither a valid Hugging Face repository with a *.safetensors LoRA")
|
215 |
+
raise Exception(f"You didn't include a link neither a valid Hugging Face repository with a *.safetensors LoRA")
|
216 |
+
return split_link[1], link, safetensors_name, trigger_word, image_url
|
217 |
|
218 |
def check_custom_model(link):
|
219 |
if(link.startswith("https://")):
|
|
|
264 |
def remove_custom_lora():
|
265 |
return gr.update(visible=False), gr.update(visible=False), gr.update(), "", None, ""
|
266 |
|
|
|
267 |
run_lora.zerogpu = True
|
268 |
|
269 |
css = """
|
|
|
272 |
}
|
273 |
"""
|
274 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
275 |
# ๊ฐค๋ฌ๋ฆฌ ๋๋ ํ ๋ฆฌ ์์ฑ
|
276 |
if not os.path.exists('gallery'):
|
277 |
os.makedirs('gallery')
|
|
|
279 |
# ๋ฐ์ดํฐ๋ฒ ์ด์ค ์ด๊ธฐํ
|
280 |
init_db()
|
281 |
|
282 |
+
with gr.Blocks(theme=gr.themes.Glass(), css=css) as app:
|
|
|
283 |
selected_index = gr.State(None)
|
284 |
|
285 |
with gr.Tabs():
|
|
|
341 |
inputs=[width, height],
|
342 |
outputs=[prompt, selected_info, selected_index, width, height]
|
343 |
)
|
344 |
+
|
345 |
custom_lora.input(
|
346 |
add_custom_lora,
|
347 |
inputs=[custom_lora],
|
348 |
outputs=[custom_lora_info, custom_lora_button, gallery, selected_info, selected_index, prompt]
|
349 |
)
|
350 |
+
|
351 |
custom_lora_button.click(
|
352 |
remove_custom_lora,
|
353 |
outputs=[custom_lora_info, custom_lora_button, gallery, selected_info, selected_index, custom_lora]
|
|
|
356 |
gr.on(
|
357 |
triggers=[generate_button.click, prompt.submit],
|
358 |
fn=run_lora,
|
359 |
+
inputs=[prompt, cfg_scale, steps, selected_index, randomize_seed,
|
360 |
+
seed, width, height, lora_scale],
|
361 |
outputs=[result, seed, progress_bar, original_prompt_display, english_prompt_display]
|
362 |
)
|
363 |
|