seawolf2357
commited on
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,374 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import spaces
|
2 |
+
import gradio as gr
|
3 |
+
import json
|
4 |
+
import torch
|
5 |
+
import wavio
|
6 |
+
from tqdm import tqdm
|
7 |
+
from huggingface_hub import snapshot_download
|
8 |
+
from models import AudioDiffusion, DDPMScheduler
|
9 |
+
from audioldm.audio.stft import TacotronSTFT
|
10 |
+
from audioldm.variational_autoencoder import AutoencoderKL
|
11 |
+
from pydub import AudioSegment
|
12 |
+
from gradio import Markdown
|
13 |
+
|
14 |
+
from diffusers.models.unet_2d_condition import UNet2DConditionModel
|
15 |
+
from diffusers import DiffusionPipeline, AudioPipelineOutput
|
16 |
+
from transformers import T5EncoderModel, T5Tokenizer, T5TokenizerFast, pipeline
|
17 |
+
from typing import Union
|
18 |
+
from diffusers.utils.torch_utils import randn_tensor
|
19 |
+
from tqdm import tqdm
|
20 |
+
from langdetect import detect, DetectorFactory
|
21 |
+
|
22 |
+
# Ensure consistent results from langdetect
|
23 |
+
DetectorFactory.seed = 0
|
24 |
+
|
25 |
+
class Tango2Pipeline(DiffusionPipeline):
|
26 |
+
|
27 |
+
def __init__(
|
28 |
+
self,
|
29 |
+
vae: AutoencoderKL,
|
30 |
+
text_encoder: T5EncoderModel,
|
31 |
+
tokenizer: Union[T5Tokenizer, T5TokenizerFast],
|
32 |
+
unet: UNet2DConditionModel,
|
33 |
+
scheduler: DDPMScheduler
|
34 |
+
):
|
35 |
+
super().__init__()
|
36 |
+
self.register_modules(
|
37 |
+
vae=vae,
|
38 |
+
text_encoder=text_encoder,
|
39 |
+
tokenizer=tokenizer,
|
40 |
+
unet=unet,
|
41 |
+
scheduler=scheduler
|
42 |
+
)
|
43 |
+
|
44 |
+
def _encode_prompt(self, prompt):
|
45 |
+
device = self.text_encoder.device
|
46 |
+
|
47 |
+
batch = self.tokenizer(
|
48 |
+
prompt, max_length=self.tokenizer.model_max_length, padding=True, truncation=True, return_tensors="pt"
|
49 |
+
)
|
50 |
+
input_ids, attention_mask = batch.input_ids.to(device), batch.attention_mask.to(device)
|
51 |
+
|
52 |
+
encoder_hidden_states = self.text_encoder(
|
53 |
+
input_ids=input_ids, attention_mask=attention_mask
|
54 |
+
)[0]
|
55 |
+
|
56 |
+
boolean_encoder_mask = (attention_mask == 1).to(device)
|
57 |
+
|
58 |
+
return encoder_hidden_states, boolean_encoder_mask
|
59 |
+
|
60 |
+
def _encode_text_classifier_free(self, prompt, num_samples_per_prompt):
|
61 |
+
device = self.text_encoder.device
|
62 |
+
batch = self.tokenizer(
|
63 |
+
prompt, max_length=self.tokenizer.model_max_length, padding=True, truncation=True, return_tensors="pt"
|
64 |
+
)
|
65 |
+
input_ids, attention_mask = batch.input_ids.to(device), batch.attention_mask.to(device)
|
66 |
+
|
67 |
+
with torch.no_grad():
|
68 |
+
prompt_embeds = self.text_encoder(
|
69 |
+
input_ids=input_ids, attention_mask=attention_mask
|
70 |
+
)[0]
|
71 |
+
|
72 |
+
prompt_embeds = prompt_embeds.repeat_interleave(num_samples_per_prompt, 0)
|
73 |
+
attention_mask = attention_mask.repeat_interleave(num_samples_per_prompt, 0)
|
74 |
+
|
75 |
+
# get unconditional embeddings for classifier free guidance
|
76 |
+
uncond_tokens = [""] * len(prompt)
|
77 |
+
|
78 |
+
max_length = prompt_embeds.shape[1]
|
79 |
+
uncond_batch = self.tokenizer(
|
80 |
+
uncond_tokens, max_length=max_length, padding="max_length", truncation=True, return_tensors="pt",
|
81 |
+
)
|
82 |
+
uncond_input_ids = uncond_batch.input_ids.to(device)
|
83 |
+
uncond_attention_mask = uncond_batch.attention_mask.to(device)
|
84 |
+
|
85 |
+
with torch.no_grad():
|
86 |
+
negative_prompt_embeds = self.text_encoder(
|
87 |
+
input_ids=uncond_input_ids, attention_mask=uncond_attention_mask
|
88 |
+
)[0]
|
89 |
+
|
90 |
+
negative_prompt_embeds = negative_prompt_embeds.repeat_interleave(num_samples_per_prompt, 0)
|
91 |
+
uncond_attention_mask = uncond_attention_mask.repeat_interleave(num_samples_per_prompt, 0)
|
92 |
+
|
93 |
+
# For classifier free guidance, we need to do two forward passes.
|
94 |
+
# We concatenate the unconditional and text embeddings into a single batch to avoid doing two forward passes
|
95 |
+
prompt_embeds = torch.cat([negative_prompt_embeds, prompt_embeds])
|
96 |
+
prompt_mask = torch.cat([uncond_attention_mask, attention_mask])
|
97 |
+
boolean_prompt_mask = (prompt_mask == 1).to(device)
|
98 |
+
|
99 |
+
return prompt_embeds, boolean_prompt_mask
|
100 |
+
|
101 |
+
def prepare_latents(self, batch_size, inference_scheduler, num_channels_latents, dtype, device):
|
102 |
+
shape = (batch_size, num_channels_latents, 256, 16)
|
103 |
+
latents = randn_tensor(shape, generator=None, device=device, dtype=dtype)
|
104 |
+
# scale the initial noise by the standard deviation required by the scheduler
|
105 |
+
latents = latents * inference_scheduler.init_noise_sigma
|
106 |
+
return latents
|
107 |
+
|
108 |
+
@torch.no_grad()
|
109 |
+
def inference(self, prompt, inference_scheduler, num_steps=20, guidance_scale=3, num_samples_per_prompt=1,
|
110 |
+
disable_progress=True):
|
111 |
+
device = self.text_encoder.device
|
112 |
+
classifier_free_guidance = guidance_scale > 1.0
|
113 |
+
batch_size = len(prompt) * num_samples_per_prompt
|
114 |
+
|
115 |
+
if classifier_free_guidance:
|
116 |
+
prompt_embeds, boolean_prompt_mask = self._encode_text_classifier_free(prompt, num_samples_per_prompt)
|
117 |
+
else:
|
118 |
+
prompt_embeds, boolean_prompt_mask = self._encode_prompt(prompt)
|
119 |
+
prompt_embeds = prompt_embeds.repeat_interleave(num_samples_per_prompt, 0)
|
120 |
+
boolean_prompt_mask = boolean_prompt_mask.repeat_interleave(num_samples_per_prompt, 0)
|
121 |
+
|
122 |
+
inference_scheduler.set_timesteps(num_steps, device=device)
|
123 |
+
timesteps = inference_scheduler.timesteps
|
124 |
+
|
125 |
+
num_channels_latents = self.unet.config.in_channels
|
126 |
+
latents = self.prepare_latents(batch_size, inference_scheduler, num_channels_latents, prompt_embeds.dtype, device)
|
127 |
+
|
128 |
+
num_warmup_steps = len(timesteps) - num_steps * inference_scheduler.order
|
129 |
+
progress_bar = tqdm(range(num_steps), disable=disable_progress)
|
130 |
+
|
131 |
+
for i, t in enumerate(timesteps):
|
132 |
+
# expand the latents if we are doing classifier free guidance
|
133 |
+
latent_model_input = torch.cat([latents] * 2) if classifier_free_guidance else latents
|
134 |
+
latent_model_input = inference_scheduler.scale_model_input(latent_model_input, t)
|
135 |
+
|
136 |
+
noise_pred = self.unet(
|
137 |
+
latent_model_input, t, encoder_hidden_states=prompt_embeds,
|
138 |
+
encoder_attention_mask=boolean_prompt_mask
|
139 |
+
).sample
|
140 |
+
|
141 |
+
# perform guidance
|
142 |
+
if classifier_free_guidance:
|
143 |
+
noise_pred_uncond, noise_pred_text = noise_pred.chunk(2)
|
144 |
+
noise_pred = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond)
|
145 |
+
|
146 |
+
# compute the previous noisy sample x_t -> x_t-1
|
147 |
+
latents = inference_scheduler.step(noise_pred, t, latents).prev_sample
|
148 |
+
|
149 |
+
# call the callback, if provided
|
150 |
+
if i == len(timesteps) - 1 or ((i + 1) > num_warmup_steps and (i + 1) % inference_scheduler.order == 0):
|
151 |
+
progress_bar.update(1)
|
152 |
+
|
153 |
+
return latents
|
154 |
+
|
155 |
+
@torch.no_grad()
|
156 |
+
def __call__(self, prompt, steps=100, guidance=3, samples=1, disable_progress=True):
|
157 |
+
""" Generate audio for a single prompt string. """
|
158 |
+
with torch.no_grad():
|
159 |
+
latents = self.inference([prompt], self.scheduler, steps, guidance, samples, disable_progress=disable_progress)
|
160 |
+
mel = self.vae.decode_first_stage(latents)
|
161 |
+
wave = self.vae.decode_to_waveform(mel)
|
162 |
+
|
163 |
+
return AudioPipelineOutput(audios=wave)
|
164 |
+
|
165 |
+
# Automatic device detection
|
166 |
+
if torch.cuda.is_available():
|
167 |
+
device_type = "cuda"
|
168 |
+
device_selection = "cuda:0"
|
169 |
+
else:
|
170 |
+
device_type = "cpu"
|
171 |
+
device_selection = "cpu"
|
172 |
+
|
173 |
+
class Tango:
|
174 |
+
def __init__(self, name="declare-lab/tango2", device=device_selection):
|
175 |
+
|
176 |
+
path = snapshot_download(repo_id=name)
|
177 |
+
|
178 |
+
vae_config = json.load(open("{}/vae_config.json".format(path)))
|
179 |
+
stft_config = json.load(open("{}/stft_config.json".format(path)))
|
180 |
+
main_config = json.load(open("{}/main_config.json".format(path)))
|
181 |
+
|
182 |
+
self.vae = AutoencoderKL(**vae_config).to(device)
|
183 |
+
self.stft = TacotronSTFT(**stft_config).to(device)
|
184 |
+
self.model = AudioDiffusion(**main_config).to(device)
|
185 |
+
|
186 |
+
vae_weights = torch.load("{}/pytorch_model_vae.bin".format(path), map_location=device)
|
187 |
+
stft_weights = torch.load("{}/pytorch_model_stft.bin".format(path), map_location=device)
|
188 |
+
main_weights = torch.load("{}/pytorch_model_main.bin".format(path), map_location=device)
|
189 |
+
|
190 |
+
self.vae.load_state_dict(vae_weights)
|
191 |
+
self.stft.load_state_dict(stft_weights)
|
192 |
+
self.model.load_state_dict(main_weights)
|
193 |
+
|
194 |
+
print ("Successfully loaded checkpoint from:", name)
|
195 |
+
|
196 |
+
self.vae.eval()
|
197 |
+
self.stft.eval()
|
198 |
+
self.model.eval()
|
199 |
+
|
200 |
+
self.scheduler = DDPMScheduler.from_pretrained(main_config["scheduler_name"], subfolder="scheduler")
|
201 |
+
|
202 |
+
def chunks(self, lst, n):
|
203 |
+
""" Yield successive n-sized chunks from a list. """
|
204 |
+
for i in range(0, len(lst), n):
|
205 |
+
yield lst[i:i + n]
|
206 |
+
|
207 |
+
def generate(self, prompt, steps=200, guidance=8, samples=1, disable_progress=True):
|
208 |
+
""" Generate audio for a single prompt string. """
|
209 |
+
with torch.no_grad():
|
210 |
+
latents = self.model.inference([prompt], self.scheduler, steps, guidance, samples, disable_progress=disable_progress)
|
211 |
+
mel = self.vae.decode_first_stage(latents)
|
212 |
+
wave = self.vae.decode_to_waveform(mel)
|
213 |
+
return wave[0]
|
214 |
+
|
215 |
+
def generate_for_batch(self, prompts, steps=200, guidance=8, samples=1, batch_size=8, disable_progress=True):
|
216 |
+
""" Generate audio for a list of prompt strings. """
|
217 |
+
outputs = []
|
218 |
+
for k in tqdm(range(0, len(prompts), batch_size)):
|
219 |
+
batch = prompts[k: k+batch_size]
|
220 |
+
with torch.no_grad():
|
221 |
+
latents = self.model.inference(batch, self.scheduler, steps, guidance, samples, disable_progress=disable_progress)
|
222 |
+
mel = self.vae.decode_first_stage(latents)
|
223 |
+
wave = self.vae.decode_to_waveform(mel)
|
224 |
+
outputs += [item for item in wave]
|
225 |
+
if samples == 1:
|
226 |
+
return outputs
|
227 |
+
else:
|
228 |
+
return list(self.chunks(outputs, samples))
|
229 |
+
|
230 |
+
# Initialize TANGO
|
231 |
+
tango = Tango(device=device_selection)
|
232 |
+
tango.vae.to(device_type)
|
233 |
+
tango.stft.to(device_type)
|
234 |
+
tango.model.to(device_type)
|
235 |
+
|
236 |
+
pipe = Tango2Pipeline(
|
237 |
+
vae=tango.vae,
|
238 |
+
text_encoder=tango.model.text_encoder,
|
239 |
+
tokenizer=tango.model.tokenizer,
|
240 |
+
unet=tango.model.unet,
|
241 |
+
scheduler=tango.scheduler
|
242 |
+
)
|
243 |
+
|
244 |
+
# Initialize Translation Pipeline
|
245 |
+
translation_pipeline = pipeline("translation", model="Helsinki-NLP/opus-mt-ko-en")
|
246 |
+
|
247 |
+
def adjust_audio_length(audio_path, desired_length_sec, output_format):
|
248 |
+
"""
|
249 |
+
Adjust the audio to the desired length.
|
250 |
+
If the audio is shorter, pad with silence.
|
251 |
+
If longer, trim the audio.
|
252 |
+
"""
|
253 |
+
audio = AudioSegment.from_file(audio_path)
|
254 |
+
desired_length_ms = desired_length_sec * 1000 # Convert to milliseconds
|
255 |
+
|
256 |
+
if len(audio) < desired_length_ms:
|
257 |
+
# Pad with silence
|
258 |
+
padding = AudioSegment.silent(duration=desired_length_ms - len(audio))
|
259 |
+
audio += padding
|
260 |
+
elif len(audio) > desired_length_ms:
|
261 |
+
# Trim the audio
|
262 |
+
audio = audio[:desired_length_ms]
|
263 |
+
|
264 |
+
# Export the adjusted audio
|
265 |
+
adjusted_path = f"adjusted.{output_format}"
|
266 |
+
audio.export(adjusted_path, format=output_format)
|
267 |
+
return adjusted_path
|
268 |
+
|
269 |
+
@spaces.GPU(duration=60)
|
270 |
+
def gradio_generate(prompt, output_format, steps, guidance, audio_length):
|
271 |
+
"""
|
272 |
+
Generate audio based on the prompt, translate if necessary, and adjust its length.
|
273 |
+
"""
|
274 |
+
# Detect language
|
275 |
+
try:
|
276 |
+
lang = detect(prompt)
|
277 |
+
except:
|
278 |
+
lang = "unknown"
|
279 |
+
|
280 |
+
# If the prompt is in Korean, translate to English
|
281 |
+
if lang == "ko":
|
282 |
+
translated = translation_pipeline(prompt)[0]['translation_text']
|
283 |
+
print(f"Translated Prompt: {translated}")
|
284 |
+
prompt_to_use = translated
|
285 |
+
else:
|
286 |
+
prompt_to_use = prompt
|
287 |
+
|
288 |
+
# Generate audio using the pipeline
|
289 |
+
output_wave = pipe(prompt_to_use, steps, guidance)
|
290 |
+
output_wave = output_wave.audios[0]
|
291 |
+
temp_wav = "temp.wav"
|
292 |
+
wavio.write(temp_wav, output_wave, rate=16000, sampwidth=2)
|
293 |
+
|
294 |
+
# Adjust audio length
|
295 |
+
adjusted_path = adjust_audio_length(temp_wav, audio_length, output_format)
|
296 |
+
|
297 |
+
return adjusted_path
|
298 |
+
|
299 |
+
# Gradio input and output components
|
300 |
+
input_text = gr.Textbox(lines=2, label="Prompt")
|
301 |
+
output_format = gr.Radio(
|
302 |
+
label="Output Format",
|
303 |
+
info="The file you can download",
|
304 |
+
choices=["mp3", "wav"],
|
305 |
+
value="wav"
|
306 |
+
)
|
307 |
+
audio_length = gr.Slider(
|
308 |
+
minimum=4,
|
309 |
+
maximum=10,
|
310 |
+
step=1,
|
311 |
+
label="Audio Length (seconds)",
|
312 |
+
value=6,
|
313 |
+
interactive=True
|
314 |
+
)
|
315 |
+
output_audio = gr.Audio(label="Generated Audio", type="filepath")
|
316 |
+
denoising_steps = gr.Slider(
|
317 |
+
minimum=100,
|
318 |
+
maximum=200,
|
319 |
+
step=1,
|
320 |
+
label="Steps",
|
321 |
+
value=200, # Changed from 100 to 200
|
322 |
+
interactive=True
|
323 |
+
)
|
324 |
+
guidance_scale = gr.Slider(
|
325 |
+
minimum=1,
|
326 |
+
maximum=10,
|
327 |
+
step=0.1,
|
328 |
+
label="Guidance Scale",
|
329 |
+
value=8, # Changed from 3 to 8
|
330 |
+
interactive=True
|
331 |
+
)
|
332 |
+
|
333 |
+
# Gradio interface
|
334 |
+
gr_interface = gr.Interface(
|
335 |
+
theme="Nymbo/Nymbo_Theme",
|
336 |
+
fn=gradio_generate,
|
337 |
+
inputs=[input_text, output_format, denoising_steps, guidance_scale, audio_length],
|
338 |
+
outputs=[output_audio],
|
339 |
+
title="T2: Text to SoundFX",
|
340 |
+
allow_flagging=False,
|
341 |
+
examples=[
|
342 |
+
["조용한 말소리 후 비행기가 멀어지는 소리"],
|
343 |
+
["사람들이 환호하고 박수치는 소리"],
|
344 |
+
["강한 바람 소리와 빗소리"],
|
345 |
+
["Quiet speech and then and airplane flying away"],
|
346 |
+
["A bicycle peddling on dirt and gravel followed by a man speaking then laughing"],
|
347 |
+
["Ducks quack and water splashes with some animal screeching in the background"],
|
348 |
+
["Describe the sound of the ocean"],
|
349 |
+
["A woman and a baby are having a conversation"],
|
350 |
+
["A man speaks followed by a popping noise and laughter"],
|
351 |
+
["A cup is filled from a faucet"],
|
352 |
+
["An audience cheering and clapping"],
|
353 |
+
["Rolling thunder with lightning strikes"],
|
354 |
+
["A dog barking and a cat mewing and a racing car passes by"],
|
355 |
+
["Gentle water stream, birds chirping and sudden gun shot"],
|
356 |
+
["A man talking followed by a goat baaing then a metal gate sliding shut as ducks quack and wind blows into a microphone."],
|
357 |
+
["A dog barking"],
|
358 |
+
["A cat meowing"],
|
359 |
+
["Wooden table tapping sound while water pouring"],
|
360 |
+
["Applause from a crowd with distant clicking and a man speaking over a loudspeaker"],
|
361 |
+
["two gunshots followed by birds flying away while chirping"],
|
362 |
+
["Whistling with birds chirping"],
|
363 |
+
["A person snoring"],
|
364 |
+
["Motor vehicles are driving with loud engines and a person whistles"],
|
365 |
+
["People cheering in a stadium while thunder and lightning strikes"],
|
366 |
+
["A helicopter is in flight"],
|
367 |
+
["A dog barking and a man talking and a racing car passes by"],
|
368 |
+
|
369 |
+
],
|
370 |
+
cache_examples="lazy", # Turn on to cache.
|
371 |
+
)
|
372 |
+
|
373 |
+
# Launch Gradio app
|
374 |
+
gr_interface.queue(10).launch()
|