File size: 14,078 Bytes
d5f497d
 
 
6c91ee7
 
 
d5f497d
0bf993c
6c91ee7
 
d5f497d
 
6c91ee7
0bf993c
6c91ee7
 
 
 
3ad3d31
6c91ee7
 
d5f497d
 
6c91ee7
 
3ad3d31
d5f497d
0bf993c
 
 
d5f497d
 
 
 
6c91ee7
 
 
3ad3d31
d5f497d
6c91ee7
d5f497d
0bf993c
6c91ee7
 
 
 
d5f497d
6c91ee7
d5f497d
6c91ee7
d5f497d
0bf993c
d5f497d
 
6c91ee7
d5f497d
 
6c91ee7
d5f497d
3ad3d31
 
0bf993c
3ad3d31
 
 
 
 
 
 
0bf993c
 
 
 
 
 
 
6c91ee7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d5f497d
3ad3d31
 
 
 
 
3936987
 
0bf993c
3ad3d31
 
d5f497d
8004741
d5f497d
 
e9f3ef9
6c91ee7
0bf993c
8f532a7
6c91ee7
 
 
 
 
 
 
0bf993c
 
 
d5f497d
 
 
0bf993c
e9f3ef9
0bf993c
6c91ee7
0bf993c
 
 
 
 
 
 
 
 
6c91ee7
 
 
9de30d4
cd4f227
e9f3ef9
 
 
0bf993c
6155537
e9f3ef9
 
 
 
 
 
 
0bf993c
 
 
e9f3ef9
 
 
0bf993c
e9f3ef9
 
 
0bf993c
 
 
 
 
 
 
 
 
e9f3ef9
 
 
9de30d4
fad18b4
3ad3d31
 
 
0bf993c
595a73a
3ad3d31
 
 
 
 
 
 
0bf993c
 
 
3ad3d31
 
 
0bf993c
595a73a
3ad3d31
 
0bf993c
 
 
 
 
 
 
 
 
3ad3d31
 
 
 
 
78ad020
0bf993c
fad18b4
0bf993c
fad18b4
78ad020
 
 
0bf993c
fad18b4
0bf993c
fad18b4
d5f497d
 
3ad3d31
0bf993c
0fb30ab
0bf993c
0fb30ab
3ad3d31
 
d5f497d
 
 
d890da3
d5f497d
 
 
 
 
20c2217
83bde13
20c2217
d5f497d
 
f92dc60
 
 
 
 
 
d5f497d
 
 
 
 
 
d890da3
d5f497d
6c91ee7
 
d5f497d
 
 
 
 
0bf993c
d5f497d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6c91ee7
d5f497d
 
 
 
 
 
6c91ee7
d5f497d
 
6c91ee7
 
d5f497d
 
6c91ee7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d5f497d
78ad020
20c2217
 
3ad3d31
d5f497d
 
6c91ee7
9de30d4
d5f497d
 
 
e9f3ef9
78ad020
fad18b4
7132521
78ad020
 
 
 
e9f3ef9
78ad020
fad18b4
7132521
78ad020
d5f497d
3ad3d31
 
 
 
 
 
 
 
 
d5f497d
78ad020
e9f3ef9
20c2217
9de30d4
78ad020
 
 
e9f3ef9
20c2217
9de30d4
78ad020
 
3ad3d31
 
 
 
 
 
0bf993c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
import spaces
import random
import torch
import cv2
import gradio as gr
import numpy as np
from huggingface_hub import snapshot_download
from transformers import CLIPVisionModelWithProjection, CLIPImageProcessor, pipeline
from diffusers.utils import load_image
from kolors.pipelines.pipeline_controlnet_xl_kolors_img2img import StableDiffusionXLControlNetImg2ImgPipeline
from kolors.models.modeling_chatglm import ChatGLMModel
from kolors.models.tokenization_chatglm import ChatGLMTokenizer
from kolors.models.controlnet import ControlNetModel
from diffusers import AutoencoderKL
from kolors.models.unet_2d_condition import UNet2DConditionModel
from diffusers import EulerDiscreteScheduler
from PIL import Image
from annotator.midas import MidasDetector
from annotator.dwpose import DWposeDetector
from annotator.util import resize_image, HWC3

device = "cuda"
ckpt_dir = snapshot_download(repo_id="Kwai-Kolors/Kolors")
ckpt_dir_depth = snapshot_download(repo_id="Kwai-Kolors/Kolors-ControlNet-Depth")
ckpt_dir_canny = snapshot_download(repo_id="Kwai-Kolors/Kolors-ControlNet-Canny")
ckpt_dir_pose = snapshot_download(repo_id="Kwai-Kolors/Kolors-ControlNet-Pose")

# Add translation pipeline
translator = pipeline("translation", model="Helsinki-NLP/opus-mt-ko-en")

text_encoder = ChatGLMModel.from_pretrained(f'{ckpt_dir}/text_encoder', torch_dtype=torch.float16).half().to(device)
tokenizer = ChatGLMTokenizer.from_pretrained(f'{ckpt_dir}/text_encoder')
vae = AutoencoderKL.from_pretrained(f"{ckpt_dir}/vae", revision=None).half().to(device)
scheduler = EulerDiscreteScheduler.from_pretrained(f"{ckpt_dir}/scheduler")
unet = UNet2DConditionModel.from_pretrained(f"{ckpt_dir}/unet", revision=None).half().to(device)
controlnet_depth = ControlNetModel.from_pretrained(f"{ckpt_dir_depth}", revision=None).half().to(device)
controlnet_canny = ControlNetModel.from_pretrained(f"{ckpt_dir_canny}", revision=None).half().to(device)
controlnet_pose = ControlNetModel.from_pretrained(f"{ckpt_dir_pose}", revision=None).half().to(device)

pipe_depth = StableDiffusionXLControlNetImg2ImgPipeline(
    vae=vae,
    controlnet=controlnet_depth,
    text_encoder=text_encoder,
    tokenizer=tokenizer,
    unet=unet,
    scheduler=scheduler,
    force_zeros_for_empty_prompt=False
)

pipe_canny = StableDiffusionXLControlNetImg2ImgPipeline(
    vae=vae,
    controlnet=controlnet_canny,
    text_encoder=text_encoder,
    tokenizer=tokenizer,
    unet=unet,
    scheduler=scheduler,
    force_zeros_for_empty_prompt=False
)

pipe_pose = StableDiffusionXLControlNetImg2ImgPipeline(
    vae=vae,
    controlnet=controlnet_pose,
    text_encoder=text_encoder,
    tokenizer=tokenizer,
    unet=unet,
    scheduler=scheduler,
    force_zeros_for_empty_prompt=False
)

@spaces.GPU
def translate_korean_to_english(text):
    if any(ord(char) >= 0xAC00 and ord(char) <= 0xD7A3 for char in text):  # Check if Korean characters are present
        translated = translator(text, max_length=512)[0]['translation_text']
        return translated
    return text

@spaces.GPU
def process_canny_condition(image, canny_threods=[100,200]):
    np_image = image.copy()
    np_image = cv2.Canny(np_image, canny_threods[0], canny_threods[1])
    np_image = np_image[:, :, None]
    np_image = np.concatenate([np_image, np_image, np_image], axis=2)
    np_image = HWC3(np_image)
    return Image.fromarray(np_image)

model_midas = MidasDetector()
@spaces.GPU
def process_depth_condition_midas(img, res = 1024):
    h,w,_ = img.shape
    img = resize_image(HWC3(img), res)
    result = HWC3(model_midas(img))
    result = cv2.resize(result, (w,h))
    return Image.fromarray(result)

model_dwpose = DWposeDetector()
@spaces.GPU
def process_dwpose_condition(image, res=1024):
    h,w,_ = image.shape
    img = resize_image(HWC3(image), res)
    out_res, out_img = model_dwpose(image) 
    result = HWC3(out_img)
    result = cv2.resize(result, (w,h))
    return Image.fromarray(result)

MAX_SEED = np.iinfo(np.int32).max
MAX_IMAGE_SIZE = 1024

@spaces.GPU
def infer_depth(prompt, 
          image = None, 
          negative_prompt = "nsfw, facial shadows, low resolution, jpeg artifacts, blurry, bad quality, dark face, neon lights", 
          seed = 397886929, 
          randomize_seed = False,
          guidance_scale = 6.0, 
          num_inference_steps = 50,
          controlnet_conditioning_scale = 0.7,
          control_guidance_end = 0.9,
          strength = 1.0
        ):
    prompt = translate_korean_to_english(prompt)
    negative_prompt = translate_korean_to_english(negative_prompt)
    
    if randomize_seed:
        seed = random.randint(0, MAX_SEED)
    generator = torch.Generator().manual_seed(seed)
    init_image = resize_image(image, MAX_IMAGE_SIZE)
    pipe = pipe_depth.to("cuda")
    condi_img = process_depth_condition_midas(np.array(init_image), MAX_IMAGE_SIZE)
    image = pipe(
        prompt=prompt,
        image=init_image,
        controlnet_conditioning_scale=controlnet_conditioning_scale,
        control_guidance_end=control_guidance_end, 
        strength=strength, 
        control_image=condi_img,
        negative_prompt=negative_prompt, 
        num_inference_steps=num_inference_steps, 
        guidance_scale=guidance_scale,
        num_images_per_prompt=1,
        generator=generator,
    ).images[0]
    return [condi_img, image], seed

@spaces.GPU
def infer_canny(prompt, 
          image = None, 
          negative_prompt = "nsfw, facial shadows, low resolution, jpeg artifacts, blurry, bad quality, dark face, neon lights", 
          seed = 397886929, 
          randomize_seed = False,
          guidance_scale = 6.0, 
          num_inference_steps = 50,
          controlnet_conditioning_scale = 0.7,
          control_guidance_end = 0.9,
          strength = 1.0
        ):
    prompt = translate_korean_to_english(prompt)
    negative_prompt = translate_korean_to_english(negative_prompt)
    
    if randomize_seed:
        seed = random.randint(0, MAX_SEED)
    generator = torch.Generator().manual_seed(seed)
    init_image = resize_image(image, MAX_IMAGE_SIZE)
    pipe = pipe_canny.to("cuda")
    condi_img = process_canny_condition(np.array(init_image))
    image = pipe(
        prompt=prompt,
        image=init_image,
        controlnet_conditioning_scale=controlnet_conditioning_scale,
        control_guidance_end=control_guidance_end, 
        strength=strength, 
        control_image=condi_img,
        negative_prompt=negative_prompt, 
        num_inference_steps=num_inference_steps, 
        guidance_scale=guidance_scale,
        num_images_per_prompt=1,
        generator=generator,
    ).images[0]
    return [condi_img, image], seed

@spaces.GPU
def infer_pose(prompt, 
          image = None, 
          negative_prompt = "nsfw, facial shadows, low resolution, jpeg artifacts, blurry, bad quality, dark face, neon lights", 
          seed = 66, 
          randomize_seed = False,
          guidance_scale = 6.0, 
          num_inference_steps = 50,
          controlnet_conditioning_scale = 0.7,
          control_guidance_end = 0.9,
          strength = 1.0
        ):
    prompt = translate_korean_to_english(prompt)
    negative_prompt = translate_korean_to_english(negative_prompt)
    
    if randomize_seed:
        seed = random.randint(0, MAX_SEED)
    generator = torch.Generator().manual_seed(seed)
    init_image = resize_image(image, MAX_IMAGE_SIZE)
    pipe = pipe_pose.to("cuda")
    condi_img = process_dwpose_condition(np.array(init_image), MAX_IMAGE_SIZE)
    image = pipe(
        prompt=prompt,
        image=init_image,
        controlnet_conditioning_scale=controlnet_conditioning_scale,
        control_guidance_end=control_guidance_end, 
        strength=strength, 
        control_image=condi_img,
        negative_prompt=negative_prompt, 
        num_inference_steps=num_inference_steps, 
        guidance_scale=guidance_scale,
        num_images_per_prompt=1,
        generator=generator,
    ).images[0]
    return [condi_img, image], seed

canny_examples = [
    ["μ•„λ¦„λ‹€μš΄ μ†Œλ…€, κ³ ν’ˆμ§ˆ, μ΄ˆκ³ ν•΄μƒλ„, μƒμƒν•œ 색상, 졜고의 ν’ˆμ§ˆ, 8k, HD, 4K",
     "image/woman_1.png"],
    ["μ „κ²½, κ·€μ—¬μš΄ 흰 강아지가 컡에 앉아 카메라λ₯Ό 보고 μžˆλ‹€, μ• λ‹ˆλ©”μ΄μ…˜ μŠ€νƒ€μΌ, 3D λ Œλ”λ§",
    "image/dog.png"]
]

depth_examples = [
    ["신카이 λ§ˆμ½”ν†  μŠ€νƒ€μΌ, ν’λΆ€ν•œ 색감, 녹색 μ…”μΈ λ₯Ό μž…μ€ 여성이 λ“€νŒμ— μ„œ μžˆλ‹€, μ•„λ¦„λ‹€μš΄ 풍경, μƒμΎŒν•˜κ³  밝은, λ°˜μ§μ΄λŠ” λΉ›, 졜고의 ν’ˆμ§ˆ, μ΄ˆμ„Έλ°€, 8K ν™”μ§ˆ",
     "image/woman_2.png"],
    ["ν™”λ €ν•œ μƒ‰μƒμ˜ μž‘μ€ μƒˆ, κ³ ν’ˆμ§ˆ, μ΄ˆκ³ ν•΄μƒλ„, μƒμƒν•œ 색상, 졜고의 ν’ˆμ§ˆ, 8k, HD, 4K",
     "image/bird.png"]
]

pose_examples = [
    ["보라색 퍼프 μ†Œλ§€ λ“œλ ˆμŠ€λ₯Ό μž…κ³  μ™•κ΄€κ³Ό 흰색 레이슀 μž₯갑을 λ‚€ μ†Œλ…€κ°€ μ–‘ μ†μœΌλ‘œ 얼꡴을 감싸고 μžˆλ‹€, κ³ ν’ˆμ§ˆ, μ΄ˆκ³ ν•΄μƒλ„, μƒμƒν•œ 색상, 졜고의 ν’ˆμ§ˆ, 8k, HD, 4K",
     "image/woman_3.png"],
    ["검은색 슀포츠 μž¬ν‚·κ³Ό 흰색 μ΄λ„ˆλ₯Ό μž…κ³  λͺ©κ±Έμ΄λ₯Ό ν•œ 여성이 거리에 μ„œ μžˆλ‹€, λ°°κ²½μ—λŠ” λΉ¨κ°„ 건물과 녹색 λ‚˜λ¬΄κ°€ μžˆλ‹€, κ³ ν’ˆμ§ˆ, μ΄ˆκ³ ν•΄μƒλ„, μƒμƒν•œ 색상, 졜고의 ν’ˆμ§ˆ, 8k, HD, 4K",
     "image/woman_4.png"]
]

css="""
#col-left {
    margin: 0 auto;
    max-width: 600px;
}
#col-right {
    margin: 0 auto;
    max-width: 750px;
}
#button {
    color: blue;
}
"""

def load_description(fp):
    with open(fp, 'r', encoding='utf-8') as f:
        content = f.read()
    return content

with gr.Blocks(css=css) as Kolors:
    with gr.Row():
        with gr.Column(elem_id="col-left"):
            with gr.Row():
                prompt = gr.Textbox(
                    label="Prompt",
                    placeholder="Enter your prompt",
                    lines=2
                )
            with gr.Row():
                image = gr.Image(label="Image", type="pil")
            with gr.Accordion("Advanced Settings", open=False):
                negative_prompt = gr.Textbox(
                    label="Negative prompt",
                    placeholder="Enter a negative prompt",
                    visible=True,
                    value="nsfw, facial shadows, low resolution, jpeg artifacts, blurry, bad quality, dark face, neon lights"
                )
                seed = gr.Slider(
                    label="Seed",
                    minimum=0,
                    maximum=MAX_SEED,
                    step=1,
                    value=0,
                )
                randomize_seed = gr.Checkbox(label="Randomize seed", value=True)
                with gr.Row():
                    guidance_scale = gr.Slider(
                        label="Guidance scale",
                        minimum=0.0,
                        maximum=10.0,
                        step=0.1,
                        value=6.0,
                    )
                    num_inference_steps = gr.Slider(
                        label="Number of inference steps",
                        minimum=10,
                        maximum=50,
                        step=1,
                        value=30,
                    )
                with gr.Row():
                    controlnet_conditioning_scale = gr.Slider(
                        label="Controlnet Conditioning Scale",
                        minimum=0.0,
                        maximum=1.0,
                        step=0.1,
                        value=0.7,
                    )
                    control_guidance_end = gr.Slider(
                        label="Control Guidance End",
                        minimum=0.0,
                        maximum=1.0,
                        step=0.1,
                        value=0.9,
                    )
                with gr.Row():
                    strength = gr.Slider(
                        label="Strength",
                        minimum=0.0,
                        maximum=1.0,
                        step=0.1,
                        value=1.0,
                    )
            with gr.Row():
                canny_button = gr.Button("Canny", elem_id="button")
                depth_button = gr.Button("Depth", elem_id="button")
                pose_button = gr.Button("Pose", elem_id="button")
            
        with gr.Column(elem_id="col-right"):
            result = gr.Gallery(label="Result", show_label=False, columns=2)
            seed_used = gr.Number(label="Seed Used")
    
    with gr.Row():
        gr.Examples(
                fn = infer_canny,
                examples = canny_examples,
                inputs = [prompt, image],
                outputs = [result, seed_used],
                label = "Canny"
            )
    with gr.Row():
        gr.Examples(
                fn = infer_depth,
                examples = depth_examples,
                inputs = [prompt, image],
                outputs = [result, seed_used],
                label = "Depth"
            )
        
    with gr.Row():
        gr.Examples(
                fn = infer_pose,
                examples = pose_examples,
                inputs = [prompt, image],
                outputs = [result, seed_used],
                label = "Pose"
            )

    canny_button.click(
        fn = infer_canny,
        inputs = [prompt, image, negative_prompt, seed, randomize_seed, guidance_scale, num_inference_steps, controlnet_conditioning_scale, control_guidance_end, strength],
        outputs = [result, seed_used]
    )

    depth_button.click(
        fn = infer_depth,
        inputs = [prompt, image, negative_prompt, seed, randomize_seed, guidance_scale, num_inference_steps, controlnet_conditioning_scale, control_guidance_end, strength],
        outputs = [result, seed_used]
    )

    pose_button.click(
        fn = infer_pose,
        inputs = [prompt, image, negative_prompt, seed, randomize_seed, guidance_scale, num_inference_steps, controlnet_conditioning_scale, control_guidance_end, strength],
        outputs = [result, seed_used]
    )

Kolors.queue().launch(debug=True)