Spaces:
Paused
Paused
Update app.py
Browse files
app.py
CHANGED
@@ -5,7 +5,7 @@ import cv2
|
|
5 |
import gradio as gr
|
6 |
import numpy as np
|
7 |
from huggingface_hub import snapshot_download
|
8 |
-
from transformers import
|
9 |
from diffusers.utils import load_image
|
10 |
from kolors.pipelines.pipeline_controlnet_xl_kolors_img2img import StableDiffusionXLControlNetImg2ImgPipeline
|
11 |
from kolors.models.modeling_chatglm import ChatGLMModel
|
@@ -15,16 +15,11 @@ from diffusers import AutoencoderKL
|
|
15 |
from kolors.models.unet_2d_condition import UNet2DConditionModel
|
16 |
from diffusers import EulerDiscreteScheduler
|
17 |
from PIL import Image, ImageDraw, ImageFont
|
18 |
-
from annotator.midas import MidasDetector
|
19 |
-
from annotator.dwpose import DWposeDetector
|
20 |
-
from annotator.util import resize_image, HWC3
|
21 |
import os
|
22 |
|
23 |
device = "cuda"
|
24 |
ckpt_dir = snapshot_download(repo_id="Kwai-Kolors/Kolors")
|
25 |
-
ckpt_dir_depth = snapshot_download(repo_id="Kwai-Kolors/Kolors-ControlNet-Depth")
|
26 |
ckpt_dir_canny = snapshot_download(repo_id="Kwai-Kolors/Kolors-ControlNet-Canny")
|
27 |
-
ckpt_dir_pose = snapshot_download(repo_id="Kwai-Kolors/Kolors-ControlNet-Pose")
|
28 |
|
29 |
# Add translation pipeline
|
30 |
translator = pipeline("translation", model="Helsinki-NLP/opus-mt-ko-en")
|
@@ -34,19 +29,7 @@ tokenizer = ChatGLMTokenizer.from_pretrained(f'{ckpt_dir}/text_encoder')
|
|
34 |
vae = AutoencoderKL.from_pretrained(f"{ckpt_dir}/vae", revision=None).half().to(device)
|
35 |
scheduler = EulerDiscreteScheduler.from_pretrained(f"{ckpt_dir}/scheduler")
|
36 |
unet = UNet2DConditionModel.from_pretrained(f"{ckpt_dir}/unet", revision=None).half().to(device)
|
37 |
-
controlnet_depth = ControlNetModel.from_pretrained(f"{ckpt_dir_depth}", revision=None).half().to(device)
|
38 |
controlnet_canny = ControlNetModel.from_pretrained(f"{ckpt_dir_canny}", revision=None).half().to(device)
|
39 |
-
controlnet_pose = ControlNetModel.from_pretrained(f"{ckpt_dir_pose}", revision=None).half().to(device)
|
40 |
-
|
41 |
-
pipe_depth = StableDiffusionXLControlNetImg2ImgPipeline(
|
42 |
-
vae=vae,
|
43 |
-
controlnet=controlnet_depth,
|
44 |
-
text_encoder=text_encoder,
|
45 |
-
tokenizer=tokenizer,
|
46 |
-
unet=unet,
|
47 |
-
scheduler=scheduler,
|
48 |
-
force_zeros_for_empty_prompt=False
|
49 |
-
)
|
50 |
|
51 |
pipe_canny = StableDiffusionXLControlNetImg2ImgPipeline(
|
52 |
vae=vae,
|
@@ -58,16 +41,6 @@ pipe_canny = StableDiffusionXLControlNetImg2ImgPipeline(
|
|
58 |
force_zeros_for_empty_prompt=False
|
59 |
)
|
60 |
|
61 |
-
pipe_pose = StableDiffusionXLControlNetImg2ImgPipeline(
|
62 |
-
vae=vae,
|
63 |
-
controlnet=controlnet_pose,
|
64 |
-
text_encoder=text_encoder,
|
65 |
-
tokenizer=tokenizer,
|
66 |
-
unet=unet,
|
67 |
-
scheduler=scheduler,
|
68 |
-
force_zeros_for_empty_prompt=False
|
69 |
-
)
|
70 |
-
|
71 |
@spaces.GPU
|
72 |
def translate_korean_to_english(text):
|
73 |
if any(ord(char) >= 0xAC00 and ord(char) <= 0xD7A3 for char in text): # Check if Korean characters are present
|
@@ -84,150 +57,10 @@ def process_canny_condition(image, canny_threods=[100,200]):
|
|
84 |
np_image = HWC3(np_image)
|
85 |
return Image.fromarray(np_image)
|
86 |
|
87 |
-
model_midas = MidasDetector()
|
88 |
-
@spaces.GPU
|
89 |
-
def process_depth_condition_midas(img, res = 1024):
|
90 |
-
h,w,_ = img.shape
|
91 |
-
img = resize_image(HWC3(img), res)
|
92 |
-
result = HWC3(model_midas(img))
|
93 |
-
result = cv2.resize(result, (w,h))
|
94 |
-
return Image.fromarray(result)
|
95 |
-
|
96 |
-
model_dwpose = DWposeDetector()
|
97 |
-
@spaces.GPU
|
98 |
-
def process_dwpose_condition(image, res=1024):
|
99 |
-
h,w,_ = image.shape
|
100 |
-
img = resize_image(HWC3(image), res)
|
101 |
-
out_res, out_img = model_dwpose(image)
|
102 |
-
result = HWC3(out_img)
|
103 |
-
result = cv2.resize(result, (w,h))
|
104 |
-
return Image.fromarray(result)
|
105 |
-
|
106 |
MAX_SEED = np.iinfo(np.int32).max
|
107 |
MAX_IMAGE_SIZE = 1024
|
108 |
|
109 |
-
|
110 |
-
def infer_depth(prompt,
|
111 |
-
image = None,
|
112 |
-
negative_prompt = "nsfw, facial shadows, low resolution, jpeg artifacts, blurry, bad quality, dark face, neon lights",
|
113 |
-
seed = 397886929,
|
114 |
-
randomize_seed = False,
|
115 |
-
guidance_scale = 6.0,
|
116 |
-
num_inference_steps = 50,
|
117 |
-
controlnet_conditioning_scale = 0.7,
|
118 |
-
control_guidance_end = 0.9,
|
119 |
-
strength = 1.0
|
120 |
-
):
|
121 |
-
prompt = translate_korean_to_english(prompt)
|
122 |
-
negative_prompt = translate_korean_to_english(negative_prompt)
|
123 |
-
|
124 |
-
if randomize_seed:
|
125 |
-
seed = random.randint(0, MAX_SEED)
|
126 |
-
generator = torch.Generator().manual_seed(seed)
|
127 |
-
init_image = resize_image(image, MAX_IMAGE_SIZE)
|
128 |
-
pipe = pipe_depth.to("cuda")
|
129 |
-
condi_img = process_depth_condition_midas(np.array(init_image), MAX_IMAGE_SIZE)
|
130 |
-
image = pipe(
|
131 |
-
prompt=prompt,
|
132 |
-
image=init_image,
|
133 |
-
controlnet_conditioning_scale=controlnet_conditioning_scale,
|
134 |
-
control_guidance_end=control_guidance_end,
|
135 |
-
strength=strength,
|
136 |
-
control_image=condi_img,
|
137 |
-
negative_prompt=negative_prompt,
|
138 |
-
num_inference_steps=num_inference_steps,
|
139 |
-
guidance_scale=guidance_scale,
|
140 |
-
num_images_per_prompt=1,
|
141 |
-
generator=generator,
|
142 |
-
).images[0]
|
143 |
-
return [condi_img, image], seed
|
144 |
-
|
145 |
-
@spaces.GPU
|
146 |
-
def infer_canny(prompt,
|
147 |
-
image = None,
|
148 |
-
negative_prompt = "nsfw, facial shadows, low resolution, jpeg artifacts, blurry, bad quality, dark face, neon lights",
|
149 |
-
seed = 397886929,
|
150 |
-
randomize_seed = False,
|
151 |
-
guidance_scale = 6.0,
|
152 |
-
num_inference_steps = 50,
|
153 |
-
controlnet_conditioning_scale = 0.7,
|
154 |
-
control_guidance_end = 0.9,
|
155 |
-
strength = 1.0
|
156 |
-
):
|
157 |
-
prompt = translate_korean_to_english(prompt)
|
158 |
-
negative_prompt = translate_korean_to_english(negative_prompt)
|
159 |
-
|
160 |
-
if randomize_seed:
|
161 |
-
seed = random.randint(0, MAX_SEED)
|
162 |
-
generator = torch.Generator().manual_seed(seed)
|
163 |
-
init_image = resize_image(image, MAX_IMAGE_SIZE)
|
164 |
-
pipe = pipe_canny.to("cuda")
|
165 |
-
condi_img = process_canny_condition(np.array(init_image))
|
166 |
-
image = pipe(
|
167 |
-
prompt=prompt,
|
168 |
-
image=init_image,
|
169 |
-
controlnet_conditioning_scale=controlnet_conditioning_scale,
|
170 |
-
control_guidance_end=control_guidance_end,
|
171 |
-
strength=strength,
|
172 |
-
control_image=condi_img,
|
173 |
-
negative_prompt=negative_prompt,
|
174 |
-
num_inference_steps=num_inference_steps,
|
175 |
-
guidance_scale=guidance_scale,
|
176 |
-
num_images_per_prompt=1,
|
177 |
-
generator=generator,
|
178 |
-
).images[0]
|
179 |
-
return [condi_img, image], seed
|
180 |
-
|
181 |
-
@spaces.GPU
|
182 |
-
def infer_pose(prompt,
|
183 |
-
image = None,
|
184 |
-
negative_prompt = "nsfw, facial shadows, low resolution, jpeg artifacts, blurry, bad quality, dark face, neon lights",
|
185 |
-
seed = 66,
|
186 |
-
randomize_seed = False,
|
187 |
-
guidance_scale = 6.0,
|
188 |
-
num_inference_steps = 50,
|
189 |
-
controlnet_conditioning_scale = 0.7,
|
190 |
-
control_guidance_end = 0.9,
|
191 |
-
strength = 1.0
|
192 |
-
):
|
193 |
-
prompt = translate_korean_to_english(prompt)
|
194 |
-
negative_prompt = translate_korean_to_english(negative_prompt)
|
195 |
-
|
196 |
-
if randomize_seed:
|
197 |
-
seed = random.randint(0, MAX_SEED)
|
198 |
-
generator = torch.Generator().manual_seed(seed)
|
199 |
-
init_image = resize_image(image, MAX_IMAGE_SIZE)
|
200 |
-
pipe = pipe_pose.to("cuda")
|
201 |
-
condi_img = process_dwpose_condition(np.array(init_image), MAX_IMAGE_SIZE)
|
202 |
-
image = pipe(
|
203 |
-
prompt=prompt,
|
204 |
-
image=init_image,
|
205 |
-
controlnet_conditioning_scale=controlnet_conditioning_scale,
|
206 |
-
control_guidance_end=control_guidance_end,
|
207 |
-
strength=strength,
|
208 |
-
control_image=condi_img,
|
209 |
-
negative_prompt=negative_prompt,
|
210 |
-
num_inference_steps=num_inference_steps,
|
211 |
-
guidance_scale=guidance_scale,
|
212 |
-
num_images_per_prompt=1,
|
213 |
-
generator=generator,
|
214 |
-
).images[0]
|
215 |
-
return [condi_img, image], seed
|
216 |
-
|
217 |
-
css = """
|
218 |
-
footer {
|
219 |
-
visibility: hidden;
|
220 |
-
}
|
221 |
-
"""
|
222 |
-
|
223 |
-
|
224 |
-
def load_description(fp):
|
225 |
-
with open(fp, 'r', encoding='utf-8') as f:
|
226 |
-
content = f.read()
|
227 |
-
return content
|
228 |
-
|
229 |
-
# Add the text_to_image function
|
230 |
-
def text_to_image(text, size, position):
|
231 |
width, height = 1024, 576
|
232 |
image = Image.new("RGB", (width, height), "white")
|
233 |
draw = ImageDraw.Draw(image)
|
@@ -278,6 +111,51 @@ def text_to_image(text, size, position):
|
|
278 |
|
279 |
return image
|
280 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
281 |
with gr.Blocks(theme="Nymbo/Nymbo_Theme", css=css) as Kolors:
|
282 |
with gr.Row():
|
283 |
with gr.Column(elem_id="col-left"):
|
@@ -287,21 +165,6 @@ with gr.Blocks(theme="Nymbo/Nymbo_Theme", css=css) as Kolors:
|
|
287 |
placeholder="Enter your prompt",
|
288 |
lines=2
|
289 |
)
|
290 |
-
with gr.Row():
|
291 |
-
image_input_type = gr.Radio(["Upload Image", "Generate Text Image"], label="Input Type", value="Upload Image")
|
292 |
-
|
293 |
-
with gr.Row():
|
294 |
-
image = gr.Image(label="Image", type="pil", visible=True)
|
295 |
-
with gr.Column(visible=False) as text_image_inputs:
|
296 |
-
text_input = gr.Textbox(label="Enter Text", lines=5, placeholder="Type your text here...")
|
297 |
-
font_size = gr.Radio([48, 72, 96, 144], label="Font Size", value=72)
|
298 |
-
text_position = gr.Dropdown(
|
299 |
-
["top-left", "top-center", "top-right", "middle-left", "middle-center", "middle-right", "bottom-left", "bottom-center", "bottom-right"],
|
300 |
-
label="Text Position",
|
301 |
-
value="middle-center"
|
302 |
-
)
|
303 |
-
generate_text_image = gr.Button("Generate Text Image")
|
304 |
-
|
305 |
with gr.Accordion("Advanced Settings", open=False):
|
306 |
negative_prompt = gr.Textbox(
|
307 |
label="Negative prompt",
|
@@ -357,73 +220,15 @@ with gr.Blocks(theme="Nymbo/Nymbo_Theme", css=css) as Kolors:
|
|
357 |
)
|
358 |
with gr.Row():
|
359 |
canny_button = gr.Button("Canny", elem_id="button")
|
360 |
-
depth_button = gr.Button("Depth", elem_id="button")
|
361 |
-
pose_button = gr.Button("Pose", elem_id="button")
|
362 |
|
363 |
with gr.Column(elem_id="col-right"):
|
364 |
result = gr.Gallery(label="Result", show_label=False, columns=2)
|
365 |
seed_used = gr.Number(label="Seed Used")
|
366 |
|
367 |
-
def toggle_image_input(choice):
|
368 |
-
return {
|
369 |
-
image: gr.update(visible=choice == "Upload Image"),
|
370 |
-
text_image_inputs: gr.update(visible=choice == "Generate Text Image")
|
371 |
-
}
|
372 |
-
|
373 |
-
image_input_type.change(toggle_image_input, image_input_type, [image, text_image_inputs])
|
374 |
-
|
375 |
-
def generate_and_use_text_image(text, size, position):
|
376 |
-
text_image = text_to_image(text, size, position)
|
377 |
-
return text_image
|
378 |
-
|
379 |
-
generate_text_image.click(
|
380 |
-
generate_and_use_text_image,
|
381 |
-
inputs=[text_input, font_size, text_position],
|
382 |
-
outputs=image
|
383 |
-
)
|
384 |
-
|
385 |
-
with gr.Row():
|
386 |
-
gr.Examples(
|
387 |
-
fn = infer_canny,
|
388 |
-
examples = canny_examples,
|
389 |
-
inputs = [prompt, image],
|
390 |
-
outputs = [result, seed_used],
|
391 |
-
label = "Canny"
|
392 |
-
)
|
393 |
-
with gr.Row():
|
394 |
-
gr.Examples(
|
395 |
-
fn = infer_depth,
|
396 |
-
examples = depth_examples,
|
397 |
-
inputs = [prompt, image],
|
398 |
-
outputs = [result, seed_used],
|
399 |
-
label = "Depth"
|
400 |
-
)
|
401 |
-
|
402 |
-
with gr.Row():
|
403 |
-
gr.Examples(
|
404 |
-
fn = infer_pose,
|
405 |
-
examples = pose_examples,
|
406 |
-
inputs = [prompt, image],
|
407 |
-
outputs = [result, seed_used],
|
408 |
-
label = "Pose"
|
409 |
-
)
|
410 |
-
|
411 |
canny_button.click(
|
412 |
fn = infer_canny,
|
413 |
-
inputs = [prompt,
|
414 |
-
outputs = [result, seed_used]
|
415 |
-
)
|
416 |
-
|
417 |
-
depth_button.click(
|
418 |
-
fn = infer_depth,
|
419 |
-
inputs = [prompt, image, negative_prompt, seed, randomize_seed, guidance_scale, num_inference_steps, controlnet_conditioning_scale, control_guidance_end, strength],
|
420 |
-
outputs = [result, seed_used]
|
421 |
-
)
|
422 |
-
|
423 |
-
pose_button.click(
|
424 |
-
fn = infer_pose,
|
425 |
-
inputs = [prompt, image, negative_prompt, seed, randomize_seed, guidance_scale, num_inference_steps, controlnet_conditioning_scale, control_guidance_end, strength],
|
426 |
outputs = [result, seed_used]
|
427 |
)
|
428 |
|
429 |
-
Kolors.queue().launch(debug=True)
|
|
|
5 |
import gradio as gr
|
6 |
import numpy as np
|
7 |
from huggingface_hub import snapshot_download
|
8 |
+
from transformers import pipeline
|
9 |
from diffusers.utils import load_image
|
10 |
from kolors.pipelines.pipeline_controlnet_xl_kolors_img2img import StableDiffusionXLControlNetImg2ImgPipeline
|
11 |
from kolors.models.modeling_chatglm import ChatGLMModel
|
|
|
15 |
from kolors.models.unet_2d_condition import UNet2DConditionModel
|
16 |
from diffusers import EulerDiscreteScheduler
|
17 |
from PIL import Image, ImageDraw, ImageFont
|
|
|
|
|
|
|
18 |
import os
|
19 |
|
20 |
device = "cuda"
|
21 |
ckpt_dir = snapshot_download(repo_id="Kwai-Kolors/Kolors")
|
|
|
22 |
ckpt_dir_canny = snapshot_download(repo_id="Kwai-Kolors/Kolors-ControlNet-Canny")
|
|
|
23 |
|
24 |
# Add translation pipeline
|
25 |
translator = pipeline("translation", model="Helsinki-NLP/opus-mt-ko-en")
|
|
|
29 |
vae = AutoencoderKL.from_pretrained(f"{ckpt_dir}/vae", revision=None).half().to(device)
|
30 |
scheduler = EulerDiscreteScheduler.from_pretrained(f"{ckpt_dir}/scheduler")
|
31 |
unet = UNet2DConditionModel.from_pretrained(f"{ckpt_dir}/unet", revision=None).half().to(device)
|
|
|
32 |
controlnet_canny = ControlNetModel.from_pretrained(f"{ckpt_dir_canny}", revision=None).half().to(device)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
33 |
|
34 |
pipe_canny = StableDiffusionXLControlNetImg2ImgPipeline(
|
35 |
vae=vae,
|
|
|
41 |
force_zeros_for_empty_prompt=False
|
42 |
)
|
43 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
44 |
@spaces.GPU
|
45 |
def translate_korean_to_english(text):
|
46 |
if any(ord(char) >= 0xAC00 and ord(char) <= 0xD7A3 for char in text): # Check if Korean characters are present
|
|
|
57 |
np_image = HWC3(np_image)
|
58 |
return Image.fromarray(np_image)
|
59 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
60 |
MAX_SEED = np.iinfo(np.int32).max
|
61 |
MAX_IMAGE_SIZE = 1024
|
62 |
|
63 |
+
def text_to_image(text, size=72, position="middle-center"):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
64 |
width, height = 1024, 576
|
65 |
image = Image.new("RGB", (width, height), "white")
|
66 |
draw = ImageDraw.Draw(image)
|
|
|
111 |
|
112 |
return image
|
113 |
|
114 |
+
@spaces.GPU
|
115 |
+
def infer_canny(prompt,
|
116 |
+
negative_prompt = "nsfw, facial shadows, low resolution, jpeg artifacts, blurry, bad quality, dark face, neon lights",
|
117 |
+
seed = 397886929,
|
118 |
+
randomize_seed = False,
|
119 |
+
guidance_scale = 6.0,
|
120 |
+
num_inference_steps = 50,
|
121 |
+
controlnet_conditioning_scale = 0.7,
|
122 |
+
control_guidance_end = 0.9,
|
123 |
+
strength = 1.0
|
124 |
+
):
|
125 |
+
prompt = translate_korean_to_english(prompt)
|
126 |
+
negative_prompt = translate_korean_to_english(negative_prompt)
|
127 |
+
|
128 |
+
if randomize_seed:
|
129 |
+
seed = random.randint(0, MAX_SEED)
|
130 |
+
generator = torch.Generator().manual_seed(seed)
|
131 |
+
|
132 |
+
# Generate text image
|
133 |
+
init_image = text_to_image(prompt)
|
134 |
+
init_image = resize_image(init_image, MAX_IMAGE_SIZE)
|
135 |
+
|
136 |
+
pipe = pipe_canny.to("cuda")
|
137 |
+
condi_img = process_canny_condition(np.array(init_image))
|
138 |
+
image = pipe(
|
139 |
+
prompt=prompt,
|
140 |
+
image=init_image,
|
141 |
+
controlnet_conditioning_scale=controlnet_conditioning_scale,
|
142 |
+
control_guidance_end=control_guidance_end,
|
143 |
+
strength=strength,
|
144 |
+
control_image=condi_img,
|
145 |
+
negative_prompt=negative_prompt,
|
146 |
+
num_inference_steps=num_inference_steps,
|
147 |
+
guidance_scale=guidance_scale,
|
148 |
+
num_images_per_prompt=1,
|
149 |
+
generator=generator,
|
150 |
+
).images[0]
|
151 |
+
return [condi_img, image], seed
|
152 |
+
|
153 |
+
css = """
|
154 |
+
footer {
|
155 |
+
visibility: hidden;
|
156 |
+
}
|
157 |
+
"""
|
158 |
+
|
159 |
with gr.Blocks(theme="Nymbo/Nymbo_Theme", css=css) as Kolors:
|
160 |
with gr.Row():
|
161 |
with gr.Column(elem_id="col-left"):
|
|
|
165 |
placeholder="Enter your prompt",
|
166 |
lines=2
|
167 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
168 |
with gr.Accordion("Advanced Settings", open=False):
|
169 |
negative_prompt = gr.Textbox(
|
170 |
label="Negative prompt",
|
|
|
220 |
)
|
221 |
with gr.Row():
|
222 |
canny_button = gr.Button("Canny", elem_id="button")
|
|
|
|
|
223 |
|
224 |
with gr.Column(elem_id="col-right"):
|
225 |
result = gr.Gallery(label="Result", show_label=False, columns=2)
|
226 |
seed_used = gr.Number(label="Seed Used")
|
227 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
228 |
canny_button.click(
|
229 |
fn = infer_canny,
|
230 |
+
inputs = [prompt, negative_prompt, seed, randomize_seed, guidance_scale, num_inference_steps, controlnet_conditioning_scale, control_guidance_end, strength],
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
231 |
outputs = [result, seed_used]
|
232 |
)
|
233 |
|
234 |
+
Kolors.queue().launch(debug=True)
|