
feat: added _get_crops_coords_list function to automatically define ctop,cleft coord to focus on image generation, helps to better harmonize the image and corrects the problem of flattened elements.
e53bd2f
# Copyright 2025 The HuggingFace Team. All rights reserved. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
import inspect | |
from enum import Enum | |
from typing import Any, Dict, List, Optional, Tuple, Union | |
import torch | |
from transformers import ( | |
CLIPTextModel, | |
CLIPTextModelWithProjection, | |
CLIPTokenizer, | |
) | |
from diffusers.image_processor import VaeImageProcessor | |
from diffusers.loaders import ( | |
FromSingleFileMixin, | |
StableDiffusionXLLoraLoaderMixin, | |
TextualInversionLoaderMixin, | |
) | |
from diffusers.models import AutoencoderKL, UNet2DConditionModel | |
from diffusers.models.attention_processor import ( | |
AttnProcessor2_0, | |
FusedAttnProcessor2_0, | |
XFormersAttnProcessor, | |
) | |
from diffusers.models.lora import adjust_lora_scale_text_encoder | |
from diffusers.pipelines.pipeline_utils import DiffusionPipeline, StableDiffusionMixin | |
from diffusers.pipelines.stable_diffusion_xl.pipeline_output import StableDiffusionXLPipelineOutput | |
from diffusers.schedulers import KarrasDiffusionSchedulers, LMSDiscreteScheduler | |
from diffusers.utils import ( | |
USE_PEFT_BACKEND, | |
is_invisible_watermark_available, | |
is_torch_xla_available, | |
logging, | |
replace_example_docstring, | |
scale_lora_layers, | |
unscale_lora_layers, | |
) | |
from diffusers.utils.torch_utils import randn_tensor | |
try: | |
from ligo.segments import segment | |
except ImportError: | |
raise ImportError("Please install transformers and ligo-segments to use the mixture pipeline") | |
if is_invisible_watermark_available(): | |
from diffusers.pipelines.stable_diffusion_xl.watermark import StableDiffusionXLWatermarker | |
if is_torch_xla_available(): | |
import torch_xla.core.xla_model as xm | |
XLA_AVAILABLE = True | |
else: | |
XLA_AVAILABLE = False | |
logger = logging.get_logger(__name__) # pylint: disable=invalid-name | |
EXAMPLE_DOC_STRING = """ | |
Examples: | |
```py | |
>>> import torch | |
>>> from diffusers import StableDiffusionXLPipeline | |
>>> pipe = StableDiffusionXLPipeline.from_pretrained( | |
... "stabilityai/stable-diffusion-xl-base-1.0", torch_dtype=torch.float16 | |
... ) | |
>>> pipe = pipe.to("cuda") | |
>>> prompt = "a photo of an astronaut riding a horse on mars" | |
>>> image = pipe(prompt).images[0] | |
``` | |
""" | |
def _tile2pixel_indices(tile_row, tile_col, tile_width, tile_height, tile_row_overlap, tile_col_overlap): | |
"""Given a tile row and column numbers returns the range of pixels affected by that tiles in the overall image | |
Returns a tuple with: | |
- Starting coordinates of rows in pixel space | |
- Ending coordinates of rows in pixel space | |
- Starting coordinates of columns in pixel space | |
- Ending coordinates of columns in pixel space | |
""" | |
px_row_init = 0 if tile_row == 0 else tile_row * (tile_height - tile_row_overlap) | |
px_row_end = px_row_init + tile_height | |
px_col_init = 0 if tile_col == 0 else tile_col * (tile_width - tile_col_overlap) | |
px_col_end = px_col_init + tile_width | |
return px_row_init, px_row_end, px_col_init, px_col_end | |
def _pixel2latent_indices(px_row_init, px_row_end, px_col_init, px_col_end): | |
"""Translates coordinates in pixel space to coordinates in latent space""" | |
return px_row_init // 8, px_row_end // 8, px_col_init // 8, px_col_end // 8 | |
def _tile2latent_indices(tile_row, tile_col, tile_width, tile_height, tile_row_overlap, tile_col_overlap): | |
"""Given a tile row and column numbers returns the range of latents affected by that tiles in the overall image | |
Returns a tuple with: | |
- Starting coordinates of rows in latent space | |
- Ending coordinates of rows in latent space | |
- Starting coordinates of columns in latent space | |
- Ending coordinates of columns in latent space | |
""" | |
px_row_init, px_row_end, px_col_init, px_col_end = _tile2pixel_indices( | |
tile_row, tile_col, tile_width, tile_height, tile_row_overlap, tile_col_overlap | |
) | |
return _pixel2latent_indices(px_row_init, px_row_end, px_col_init, px_col_end) | |
def _tile2latent_exclusive_indices( | |
tile_row, tile_col, tile_width, tile_height, tile_row_overlap, tile_col_overlap, rows, columns | |
): | |
"""Given a tile row and column numbers returns the range of latents affected only by that tile in the overall image | |
Returns a tuple with: | |
- Starting coordinates of rows in latent space | |
- Ending coordinates of rows in latent space | |
- Starting coordinates of columns in latent space | |
- Ending coordinates of columns in latent space | |
""" | |
row_init, row_end, col_init, col_end = _tile2latent_indices( | |
tile_row, tile_col, tile_width, tile_height, tile_row_overlap, tile_col_overlap | |
) | |
row_segment = segment(row_init, row_end) | |
col_segment = segment(col_init, col_end) | |
# Iterate over the rest of tiles, clipping the region for the current tile | |
for row in range(rows): | |
for column in range(columns): | |
if row != tile_row and column != tile_col: | |
clip_row_init, clip_row_end, clip_col_init, clip_col_end = _tile2latent_indices( | |
row, column, tile_width, tile_height, tile_row_overlap, tile_col_overlap | |
) | |
row_segment = row_segment - segment(clip_row_init, clip_row_end) | |
col_segment = col_segment - segment(clip_col_init, clip_col_end) | |
# return row_init, row_end, col_init, col_end | |
return row_segment[0], row_segment[1], col_segment[0], col_segment[1] | |
def _get_crops_coords_list(num_rows, num_cols, output_width): | |
""" | |
Generates a list of lists of `crops_coords_top_left` tuples for focusing on | |
different horizontal parts of an image, and repeats this list for the specified | |
number of rows in the output structure. | |
This function calculates `crops_coords_top_left` tuples to create horizontal | |
focus variations (like left, center, right focus) based on `output_width` | |
and `num_cols` (which represents the number of horizontal focus points/columns). | |
It then repeats the *list* of these horizontal focus tuples `num_rows` times to | |
create the final list of lists output structure. | |
Args: | |
num_rows (int): The desired number of rows in the output list of lists. | |
This determines how many times the list of horizontal | |
focus variations will be repeated. | |
num_cols (int): The number of horizontal focus points (columns) to generate. | |
This determines how many horizontal focus variations are | |
created based on dividing the `output_width`. | |
output_width (int): The desired width of the output image. | |
Returns: | |
list[list[tuple[int, int]]]: A list of lists of tuples. Each inner list | |
contains `num_cols` tuples of `(ctop, cleft)`, | |
representing horizontal focus points. The outer list | |
contains `num_rows` such inner lists. | |
""" | |
crops_coords_list = [] | |
if num_cols <= 0: | |
crops_coords_list = [] | |
elif num_cols == 1: | |
crops_coords_list = [(0, 0)] | |
else: | |
section_width = output_width / num_cols | |
for i in range(num_cols): | |
cleft = int(round(i * section_width)) | |
crops_coords_list.append((0, cleft)) | |
result_list = [] | |
for _ in range(num_rows): | |
result_list.append(list(crops_coords_list)) | |
return result_list | |
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.rescale_noise_cfg | |
def rescale_noise_cfg(noise_cfg, noise_pred_text, guidance_rescale=0.0): | |
r""" | |
Rescales `noise_cfg` tensor based on `guidance_rescale` to improve image quality and fix overexposure. Based on | |
Section 3.4 from [Common Diffusion Noise Schedules and Sample Steps are | |
Flawed](https://arxiv.org/pdf/2305.08891.pdf). | |
Args: | |
noise_cfg (`torch.Tensor`): | |
The predicted noise tensor for the guided diffusion process. | |
noise_pred_text (`torch.Tensor`): | |
The predicted noise tensor for the text-guided diffusion process. | |
guidance_rescale (`float`, *optional*, defaults to 0.0): | |
A rescale factor applied to the noise predictions. | |
Returns: | |
noise_cfg (`torch.Tensor`): The rescaled noise prediction tensor. | |
""" | |
std_text = noise_pred_text.std(dim=list(range(1, noise_pred_text.ndim)), keepdim=True) | |
std_cfg = noise_cfg.std(dim=list(range(1, noise_cfg.ndim)), keepdim=True) | |
# rescale the results from guidance (fixes overexposure) | |
noise_pred_rescaled = noise_cfg * (std_text / std_cfg) | |
# mix with the original results from guidance by factor guidance_rescale to avoid "plain looking" images | |
noise_cfg = guidance_rescale * noise_pred_rescaled + (1 - guidance_rescale) * noise_cfg | |
return noise_cfg | |
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.retrieve_timesteps | |
def retrieve_timesteps( | |
scheduler, | |
num_inference_steps: Optional[int] = None, | |
device: Optional[Union[str, torch.device]] = None, | |
timesteps: Optional[List[int]] = None, | |
sigmas: Optional[List[float]] = None, | |
**kwargs, | |
): | |
r""" | |
Calls the scheduler's `set_timesteps` method and retrieves timesteps from the scheduler after the call. Handles | |
custom timesteps. Any kwargs will be supplied to `scheduler.set_timesteps`. | |
Args: | |
scheduler (`SchedulerMixin`): | |
The scheduler to get timesteps from. | |
num_inference_steps (`int`): | |
The number of diffusion steps used when generating samples with a pre-trained model. If used, `timesteps` | |
must be `None`. | |
device (`str` or `torch.device`, *optional*): | |
The device to which the timesteps should be moved to. If `None`, the timesteps are not moved. | |
timesteps (`List[int]`, *optional*): | |
Custom timesteps used to override the timestep spacing strategy of the scheduler. If `timesteps` is passed, | |
`num_inference_steps` and `sigmas` must be `None`. | |
sigmas (`List[float]`, *optional*): | |
Custom sigmas used to override the timestep spacing strategy of the scheduler. If `sigmas` is passed, | |
`num_inference_steps` and `timesteps` must be `None`. | |
Returns: | |
`Tuple[torch.Tensor, int]`: A tuple where the first element is the timestep schedule from the scheduler and the | |
second element is the number of inference steps. | |
""" | |
if timesteps is not None and sigmas is not None: | |
raise ValueError("Only one of `timesteps` or `sigmas` can be passed. Please choose one to set custom values") | |
if timesteps is not None: | |
accepts_timesteps = "timesteps" in set(inspect.signature(scheduler.set_timesteps).parameters.keys()) | |
if not accepts_timesteps: | |
raise ValueError( | |
f"The current scheduler class {scheduler.__class__}'s `set_timesteps` does not support custom" | |
f" timestep schedules. Please check whether you are using the correct scheduler." | |
) | |
scheduler.set_timesteps(timesteps=timesteps, device=device, **kwargs) | |
timesteps = scheduler.timesteps | |
num_inference_steps = len(timesteps) | |
elif sigmas is not None: | |
accept_sigmas = "sigmas" in set(inspect.signature(scheduler.set_timesteps).parameters.keys()) | |
if not accept_sigmas: | |
raise ValueError( | |
f"The current scheduler class {scheduler.__class__}'s `set_timesteps` does not support custom" | |
f" sigmas schedules. Please check whether you are using the correct scheduler." | |
) | |
scheduler.set_timesteps(sigmas=sigmas, device=device, **kwargs) | |
timesteps = scheduler.timesteps | |
num_inference_steps = len(timesteps) | |
else: | |
scheduler.set_timesteps(num_inference_steps, device=device, **kwargs) | |
timesteps = scheduler.timesteps | |
return timesteps, num_inference_steps | |
class StableDiffusionXLTilingPipeline( | |
DiffusionPipeline, | |
StableDiffusionMixin, | |
FromSingleFileMixin, | |
StableDiffusionXLLoraLoaderMixin, | |
TextualInversionLoaderMixin, | |
): | |
r""" | |
Pipeline for text-to-image generation using Stable Diffusion XL. | |
This model inherits from [`DiffusionPipeline`]. Check the superclass documentation for the generic methods the | |
library implements for all the pipelines (such as downloading or saving, running on a particular device, etc.) | |
The pipeline also inherits the following loading methods: | |
- [`~loaders.TextualInversionLoaderMixin.load_textual_inversion`] for loading textual inversion embeddings | |
- [`~loaders.FromSingleFileMixin.from_single_file`] for loading `.ckpt` files | |
- [`~loaders.StableDiffusionXLLoraLoaderMixin.load_lora_weights`] for loading LoRA weights | |
- [`~loaders.StableDiffusionXLLoraLoaderMixin.save_lora_weights`] for saving LoRA weights | |
Args: | |
vae ([`AutoencoderKL`]): | |
Variational Auto-Encoder (VAE) Model to encode and decode images to and from latent representations. | |
text_encoder ([`CLIPTextModel`]): | |
Frozen text-encoder. Stable Diffusion XL uses the text portion of | |
[CLIP](https://huggingface.co/docs/transformers/model_doc/clip#transformers.CLIPTextModel), specifically | |
the [clip-vit-large-patch14](https://huggingface.co/openai/clip-vit-large-patch14) variant. | |
text_encoder_2 ([` CLIPTextModelWithProjection`]): | |
Second frozen text-encoder. Stable Diffusion XL uses the text and pool portion of | |
[CLIP](https://huggingface.co/docs/transformers/model_doc/clip#transformers.CLIPTextModelWithProjection), | |
specifically the | |
[laion/CLIP-ViT-bigG-14-laion2B-39B-b160k](https://huggingface.co/laion/CLIP-ViT-bigG-14-laion2B-39B-b160k) | |
variant. | |
tokenizer (`CLIPTokenizer`): | |
Tokenizer of class | |
[CLIPTokenizer](https://huggingface.co/docs/transformers/v4.21.0/en/model_doc/clip#transformers.CLIPTokenizer). | |
tokenizer_2 (`CLIPTokenizer`): | |
Second Tokenizer of class | |
[CLIPTokenizer](https://huggingface.co/docs/transformers/v4.21.0/en/model_doc/clip#transformers.CLIPTokenizer). | |
unet ([`UNet2DConditionModel`]): Conditional U-Net architecture to denoise the encoded image latents. | |
scheduler ([`SchedulerMixin`]): | |
A scheduler to be used in combination with `unet` to denoise the encoded image latents. Can be one of | |
[`DDIMScheduler`], [`LMSDiscreteScheduler`], or [`PNDMScheduler`]. | |
force_zeros_for_empty_prompt (`bool`, *optional*, defaults to `"True"`): | |
Whether the negative prompt embeddings shall be forced to always be set to 0. Also see the config of | |
`stabilityai/stable-diffusion-xl-base-1-0`. | |
add_watermarker (`bool`, *optional*): | |
Whether to use the [invisible_watermark library](https://github.com/ShieldMnt/invisible-watermark/) to | |
watermark output images. If not defined, it will default to True if the package is installed, otherwise no | |
watermarker will be used. | |
""" | |
model_cpu_offload_seq = "text_encoder->text_encoder_2->image_encoder->unet->vae" | |
_optional_components = [ | |
"tokenizer", | |
"tokenizer_2", | |
"text_encoder", | |
"text_encoder_2", | |
] | |
def __init__( | |
self, | |
vae: AutoencoderKL, | |
text_encoder: CLIPTextModel, | |
text_encoder_2: CLIPTextModelWithProjection, | |
tokenizer: CLIPTokenizer, | |
tokenizer_2: CLIPTokenizer, | |
unet: UNet2DConditionModel, | |
scheduler: KarrasDiffusionSchedulers, | |
force_zeros_for_empty_prompt: bool = True, | |
add_watermarker: Optional[bool] = None, | |
): | |
super().__init__() | |
self.register_modules( | |
vae=vae, | |
text_encoder=text_encoder, | |
text_encoder_2=text_encoder_2, | |
tokenizer=tokenizer, | |
tokenizer_2=tokenizer_2, | |
unet=unet, | |
scheduler=scheduler, | |
) | |
self.register_to_config(force_zeros_for_empty_prompt=force_zeros_for_empty_prompt) | |
self.vae_scale_factor = 2 ** (len(self.vae.config.block_out_channels) - 1) if getattr(self, "vae", None) else 8 | |
self.image_processor = VaeImageProcessor(vae_scale_factor=self.vae_scale_factor) | |
self.default_sample_size = ( | |
self.unet.config.sample_size | |
if hasattr(self, "unet") and self.unet is not None and hasattr(self.unet.config, "sample_size") | |
else 128 | |
) | |
add_watermarker = add_watermarker if add_watermarker is not None else is_invisible_watermark_available() | |
if add_watermarker: | |
self.watermark = StableDiffusionXLWatermarker() | |
else: | |
self.watermark = None | |
class SeedTilesMode(Enum): | |
"""Modes in which the latents of a particular tile can be re-seeded""" | |
FULL = "full" | |
EXCLUSIVE = "exclusive" | |
def encode_prompt( | |
self, | |
prompt: str, | |
prompt_2: Optional[str] = None, | |
device: Optional[torch.device] = None, | |
num_images_per_prompt: int = 1, | |
do_classifier_free_guidance: bool = True, | |
negative_prompt: Optional[str] = None, | |
negative_prompt_2: Optional[str] = None, | |
prompt_embeds: Optional[torch.Tensor] = None, | |
negative_prompt_embeds: Optional[torch.Tensor] = None, | |
pooled_prompt_embeds: Optional[torch.Tensor] = None, | |
negative_pooled_prompt_embeds: Optional[torch.Tensor] = None, | |
lora_scale: Optional[float] = None, | |
clip_skip: Optional[int] = None, | |
): | |
r""" | |
Encodes the prompt into text encoder hidden states. | |
Args: | |
prompt (`str` or `List[str]`, *optional*): | |
prompt to be encoded | |
prompt_2 (`str` or `List[str]`, *optional*): | |
The prompt or prompts to be sent to the `tokenizer_2` and `text_encoder_2`. If not defined, `prompt` is | |
used in both text-encoders | |
device: (`torch.device`): | |
torch device | |
num_images_per_prompt (`int`): | |
number of images that should be generated per prompt | |
do_classifier_free_guidance (`bool`): | |
whether to use classifier free guidance or not | |
negative_prompt (`str` or `List[str]`, *optional*): | |
The prompt or prompts not to guide the image generation. If not defined, one has to pass | |
`negative_prompt_embeds` instead. Ignored when not using guidance (i.e., ignored if `guidance_scale` is | |
less than `1`). | |
negative_prompt_2 (`str` or `List[str]`, *optional*): | |
The prompt or prompts not to guide the image generation to be sent to `tokenizer_2` and | |
`text_encoder_2`. If not defined, `negative_prompt` is used in both text-encoders | |
prompt_embeds (`torch.Tensor`, *optional*): | |
Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not | |
provided, text embeddings will be generated from `prompt` input argument. | |
negative_prompt_embeds (`torch.Tensor`, *optional*): | |
Pre-generated negative text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt | |
weighting. If not provided, negative_prompt_embeds will be generated from `negative_prompt` input | |
argument. | |
pooled_prompt_embeds (`torch.Tensor`, *optional*): | |
Pre-generated pooled text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. | |
If not provided, pooled text embeddings will be generated from `prompt` input argument. | |
negative_pooled_prompt_embeds (`torch.Tensor`, *optional*): | |
Pre-generated negative pooled text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt | |
weighting. If not provided, pooled negative_prompt_embeds will be generated from `negative_prompt` | |
input argument. | |
lora_scale (`float`, *optional*): | |
A lora scale that will be applied to all LoRA layers of the text encoder if LoRA layers are loaded. | |
clip_skip (`int`, *optional*): | |
Number of layers to be skipped from CLIP while computing the prompt embeddings. A value of 1 means that | |
the output of the pre-final layer will be used for computing the prompt embeddings. | |
""" | |
device = device or self._execution_device | |
# set lora scale so that monkey patched LoRA | |
# function of text encoder can correctly access it | |
if lora_scale is not None and isinstance(self, StableDiffusionXLLoraLoaderMixin): | |
self._lora_scale = lora_scale | |
# dynamically adjust the LoRA scale | |
if self.text_encoder is not None: | |
if not USE_PEFT_BACKEND: | |
adjust_lora_scale_text_encoder(self.text_encoder, lora_scale) | |
else: | |
scale_lora_layers(self.text_encoder, lora_scale) | |
if self.text_encoder_2 is not None: | |
if not USE_PEFT_BACKEND: | |
adjust_lora_scale_text_encoder(self.text_encoder_2, lora_scale) | |
else: | |
scale_lora_layers(self.text_encoder_2, lora_scale) | |
prompt = [prompt] if isinstance(prompt, str) else prompt | |
if prompt is not None: | |
batch_size = len(prompt) | |
else: | |
batch_size = prompt_embeds.shape[0] | |
# Define tokenizers and text encoders | |
tokenizers = [self.tokenizer, self.tokenizer_2] if self.tokenizer is not None else [self.tokenizer_2] | |
text_encoders = ( | |
[self.text_encoder, self.text_encoder_2] if self.text_encoder is not None else [self.text_encoder_2] | |
) | |
if prompt_embeds is None: | |
prompt_2 = prompt_2 or prompt | |
prompt_2 = [prompt_2] if isinstance(prompt_2, str) else prompt_2 | |
# textual inversion: process multi-vector tokens if necessary | |
prompt_embeds_list = [] | |
prompts = [prompt, prompt_2] | |
for prompt, tokenizer, text_encoder in zip(prompts, tokenizers, text_encoders): | |
if isinstance(self, TextualInversionLoaderMixin): | |
prompt = self.maybe_convert_prompt(prompt, tokenizer) | |
text_inputs = tokenizer( | |
prompt, | |
padding="max_length", | |
max_length=tokenizer.model_max_length, | |
truncation=True, | |
return_tensors="pt", | |
) | |
text_input_ids = text_inputs.input_ids | |
untruncated_ids = tokenizer(prompt, padding="longest", return_tensors="pt").input_ids | |
if untruncated_ids.shape[-1] >= text_input_ids.shape[-1] and not torch.equal( | |
text_input_ids, untruncated_ids | |
): | |
removed_text = tokenizer.batch_decode(untruncated_ids[:, tokenizer.model_max_length - 1 : -1]) | |
logger.warning( | |
"The following part of your input was truncated because CLIP can only handle sequences up to" | |
f" {tokenizer.model_max_length} tokens: {removed_text}" | |
) | |
prompt_embeds = text_encoder(text_input_ids.to(device), output_hidden_states=True) | |
# We are only ALWAYS interested in the pooled output of the final text encoder | |
if pooled_prompt_embeds is None and prompt_embeds[0].ndim == 2: | |
pooled_prompt_embeds = prompt_embeds[0] | |
if clip_skip is None: | |
prompt_embeds = prompt_embeds.hidden_states[-2] | |
else: | |
# "2" because SDXL always indexes from the penultimate layer. | |
prompt_embeds = prompt_embeds.hidden_states[-(clip_skip + 2)] | |
prompt_embeds_list.append(prompt_embeds) | |
prompt_embeds = torch.concat(prompt_embeds_list, dim=-1) | |
# get unconditional embeddings for classifier free guidance | |
zero_out_negative_prompt = negative_prompt is None and self.config.force_zeros_for_empty_prompt | |
if do_classifier_free_guidance and negative_prompt_embeds is None and zero_out_negative_prompt: | |
negative_prompt_embeds = torch.zeros_like(prompt_embeds) | |
negative_pooled_prompt_embeds = torch.zeros_like(pooled_prompt_embeds) | |
elif do_classifier_free_guidance and negative_prompt_embeds is None: | |
negative_prompt = negative_prompt or "" | |
negative_prompt_2 = negative_prompt_2 or negative_prompt | |
# normalize str to list | |
negative_prompt = batch_size * [negative_prompt] if isinstance(negative_prompt, str) else negative_prompt | |
negative_prompt_2 = ( | |
batch_size * [negative_prompt_2] if isinstance(negative_prompt_2, str) else negative_prompt_2 | |
) | |
uncond_tokens: List[str] | |
if prompt is not None and type(prompt) is not type(negative_prompt): | |
raise TypeError( | |
f"`negative_prompt` should be the same type to `prompt`, but got {type(negative_prompt)} !=" | |
f" {type(prompt)}." | |
) | |
elif batch_size != len(negative_prompt): | |
raise ValueError( | |
f"`negative_prompt`: {negative_prompt} has batch size {len(negative_prompt)}, but `prompt`:" | |
f" {prompt} has batch size {batch_size}. Please make sure that passed `negative_prompt` matches" | |
" the batch size of `prompt`." | |
) | |
else: | |
uncond_tokens = [negative_prompt, negative_prompt_2] | |
negative_prompt_embeds_list = [] | |
for negative_prompt, tokenizer, text_encoder in zip(uncond_tokens, tokenizers, text_encoders): | |
if isinstance(self, TextualInversionLoaderMixin): | |
negative_prompt = self.maybe_convert_prompt(negative_prompt, tokenizer) | |
max_length = prompt_embeds.shape[1] | |
uncond_input = tokenizer( | |
negative_prompt, | |
padding="max_length", | |
max_length=max_length, | |
truncation=True, | |
return_tensors="pt", | |
) | |
negative_prompt_embeds = text_encoder( | |
uncond_input.input_ids.to(device), | |
output_hidden_states=True, | |
) | |
# We are only ALWAYS interested in the pooled output of the final text encoder | |
if negative_pooled_prompt_embeds is None and negative_prompt_embeds[0].ndim == 2: | |
negative_pooled_prompt_embeds = negative_prompt_embeds[0] | |
negative_prompt_embeds = negative_prompt_embeds.hidden_states[-2] | |
negative_prompt_embeds_list.append(negative_prompt_embeds) | |
negative_prompt_embeds = torch.concat(negative_prompt_embeds_list, dim=-1) | |
if self.text_encoder_2 is not None: | |
prompt_embeds = prompt_embeds.to(dtype=self.text_encoder_2.dtype, device=device) | |
else: | |
prompt_embeds = prompt_embeds.to(dtype=self.unet.dtype, device=device) | |
bs_embed, seq_len, _ = prompt_embeds.shape | |
# duplicate text embeddings for each generation per prompt, using mps friendly method | |
prompt_embeds = prompt_embeds.repeat(1, num_images_per_prompt, 1) | |
prompt_embeds = prompt_embeds.view(bs_embed * num_images_per_prompt, seq_len, -1) | |
if do_classifier_free_guidance: | |
# duplicate unconditional embeddings for each generation per prompt, using mps friendly method | |
seq_len = negative_prompt_embeds.shape[1] | |
if self.text_encoder_2 is not None: | |
negative_prompt_embeds = negative_prompt_embeds.to(dtype=self.text_encoder_2.dtype, device=device) | |
else: | |
negative_prompt_embeds = negative_prompt_embeds.to(dtype=self.unet.dtype, device=device) | |
negative_prompt_embeds = negative_prompt_embeds.repeat(1, num_images_per_prompt, 1) | |
negative_prompt_embeds = negative_prompt_embeds.view(batch_size * num_images_per_prompt, seq_len, -1) | |
pooled_prompt_embeds = pooled_prompt_embeds.repeat(1, num_images_per_prompt).view( | |
bs_embed * num_images_per_prompt, -1 | |
) | |
if do_classifier_free_guidance: | |
negative_pooled_prompt_embeds = negative_pooled_prompt_embeds.repeat(1, num_images_per_prompt).view( | |
bs_embed * num_images_per_prompt, -1 | |
) | |
if self.text_encoder is not None: | |
if isinstance(self, StableDiffusionXLLoraLoaderMixin) and USE_PEFT_BACKEND: | |
# Retrieve the original scale by scaling back the LoRA layers | |
unscale_lora_layers(self.text_encoder, lora_scale) | |
if self.text_encoder_2 is not None: | |
if isinstance(self, StableDiffusionXLLoraLoaderMixin) and USE_PEFT_BACKEND: | |
# Retrieve the original scale by scaling back the LoRA layers | |
unscale_lora_layers(self.text_encoder_2, lora_scale) | |
return prompt_embeds, negative_prompt_embeds, pooled_prompt_embeds, negative_pooled_prompt_embeds | |
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.prepare_extra_step_kwargs | |
def prepare_extra_step_kwargs(self, generator, eta): | |
# prepare extra kwargs for the scheduler step, since not all schedulers have the same signature | |
# eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers. | |
# eta corresponds to η in DDIM paper: https://arxiv.org/abs/2010.02502 | |
# and should be between [0, 1] | |
accepts_eta = "eta" in set(inspect.signature(self.scheduler.step).parameters.keys()) | |
extra_step_kwargs = {} | |
if accepts_eta: | |
extra_step_kwargs["eta"] = eta | |
# check if the scheduler accepts generator | |
accepts_generator = "generator" in set(inspect.signature(self.scheduler.step).parameters.keys()) | |
if accepts_generator: | |
extra_step_kwargs["generator"] = generator | |
return extra_step_kwargs | |
def check_inputs(self, prompt, height, width, grid_cols, seed_tiles_mode, tiles_mode): | |
if height % 8 != 0 or width % 8 != 0: | |
raise ValueError(f"`height` and `width` have to be divisible by 8 but are {height} and {width}.") | |
if prompt is not None and (not isinstance(prompt, str) and not isinstance(prompt, list)): | |
raise ValueError(f"`prompt` has to be of type `str` or `list` but is {type(prompt)}") | |
if not isinstance(prompt, list) or not all(isinstance(row, list) for row in prompt): | |
raise ValueError(f"`prompt` has to be a list of lists but is {type(prompt)}") | |
if not all(len(row) == grid_cols for row in prompt): | |
raise ValueError("All prompt rows must have the same number of prompt columns") | |
if not isinstance(seed_tiles_mode, str) and ( | |
not isinstance(seed_tiles_mode, list) or not all(isinstance(row, list) for row in seed_tiles_mode) | |
): | |
raise ValueError(f"`seed_tiles_mode` has to be a string or list of lists but is {type(prompt)}") | |
if any(mode not in tiles_mode for row in seed_tiles_mode for mode in row): | |
raise ValueError(f"Seed tiles mode must be one of {tiles_mode}") | |
def _get_add_time_ids( | |
self, original_size, crops_coords_top_left, target_size, dtype, text_encoder_projection_dim=None | |
): | |
add_time_ids = list(original_size + crops_coords_top_left + target_size) | |
passed_add_embed_dim = ( | |
self.unet.config.addition_time_embed_dim * len(add_time_ids) + text_encoder_projection_dim | |
) | |
expected_add_embed_dim = self.unet.add_embedding.linear_1.in_features | |
if expected_add_embed_dim != passed_add_embed_dim: | |
raise ValueError( | |
f"Model expects an added time embedding vector of length {expected_add_embed_dim}, but a vector of {passed_add_embed_dim} was created. The model has an incorrect config. Please check `unet.config.time_embedding_type` and `text_encoder_2.config.projection_dim`." | |
) | |
add_time_ids = torch.tensor([add_time_ids], dtype=dtype) | |
return add_time_ids | |
def _gaussian_weights(self, tile_width, tile_height, nbatches, device, dtype): | |
"""Generates a gaussian mask of weights for tile contributions""" | |
import numpy as np | |
from numpy import exp, pi, sqrt | |
latent_width = tile_width // 8 | |
latent_height = tile_height // 8 | |
var = 0.01 | |
midpoint = (latent_width - 1) / 2 # -1 because index goes from 0 to latent_width - 1 | |
x_probs = [ | |
exp(-(x - midpoint) * (x - midpoint) / (latent_width * latent_width) / (2 * var)) / sqrt(2 * pi * var) | |
for x in range(latent_width) | |
] | |
midpoint = latent_height / 2 | |
y_probs = [ | |
exp(-(y - midpoint) * (y - midpoint) / (latent_height * latent_height) / (2 * var)) / sqrt(2 * pi * var) | |
for y in range(latent_height) | |
] | |
weights_np = np.outer(y_probs, x_probs) | |
weights_torch = torch.tensor(weights_np, device=device) | |
weights_torch = weights_torch.to(dtype) | |
return torch.tile(weights_torch, (nbatches, self.unet.config.in_channels, 1, 1)) | |
def upcast_vae(self): | |
dtype = self.vae.dtype | |
self.vae.to(dtype=torch.float32) | |
use_torch_2_0_or_xformers = isinstance( | |
self.vae.decoder.mid_block.attentions[0].processor, | |
( | |
AttnProcessor2_0, | |
XFormersAttnProcessor, | |
FusedAttnProcessor2_0, | |
), | |
) | |
# if xformers or torch_2_0 is used attention block does not need | |
# to be in float32 which can save lots of memory | |
if use_torch_2_0_or_xformers: | |
self.vae.post_quant_conv.to(dtype) | |
self.vae.decoder.conv_in.to(dtype) | |
self.vae.decoder.mid_block.to(dtype) | |
# Copied from diffusers.pipelines.latent_consistency_models.pipeline_latent_consistency_text2img.LatentConsistencyModelPipeline.get_guidance_scale_embedding | |
def get_guidance_scale_embedding( | |
self, w: torch.Tensor, embedding_dim: int = 512, dtype: torch.dtype = torch.float32 | |
) -> torch.Tensor: | |
""" | |
See https://github.com/google-research/vdm/blob/dc27b98a554f65cdc654b800da5aa1846545d41b/model_vdm.py#L298 | |
Args: | |
w (`torch.Tensor`): | |
Generate embedding vectors with a specified guidance scale to subsequently enrich timestep embeddings. | |
embedding_dim (`int`, *optional*, defaults to 512): | |
Dimension of the embeddings to generate. | |
dtype (`torch.dtype`, *optional*, defaults to `torch.float32`): | |
Data type of the generated embeddings. | |
Returns: | |
`torch.Tensor`: Embedding vectors with shape `(len(w), embedding_dim)`. | |
""" | |
assert len(w.shape) == 1 | |
w = w * 1000.0 | |
half_dim = embedding_dim // 2 | |
emb = torch.log(torch.tensor(10000.0)) / (half_dim - 1) | |
emb = torch.exp(torch.arange(half_dim, dtype=dtype) * -emb) | |
emb = w.to(dtype)[:, None] * emb[None, :] | |
emb = torch.cat([torch.sin(emb), torch.cos(emb)], dim=1) | |
if embedding_dim % 2 == 1: # zero pad | |
emb = torch.nn.functional.pad(emb, (0, 1)) | |
assert emb.shape == (w.shape[0], embedding_dim) | |
return emb | |
def guidance_scale(self): | |
return self._guidance_scale | |
def clip_skip(self): | |
return self._clip_skip | |
# here `guidance_scale` is defined analog to the guidance weight `w` of equation (2) | |
# of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1` | |
# corresponds to doing no classifier free guidance. | |
def do_classifier_free_guidance(self): | |
return self._guidance_scale > 1 and self.unet.config.time_cond_proj_dim is None | |
def cross_attention_kwargs(self): | |
return self._cross_attention_kwargs | |
def num_timesteps(self): | |
return self._num_timesteps | |
def interrupt(self): | |
return self._interrupt | |
def __call__( | |
self, | |
prompt: Union[str, List[str]] = None, | |
height: Optional[int] = None, | |
width: Optional[int] = None, | |
num_inference_steps: int = 50, | |
guidance_scale: float = 5.0, | |
negative_prompt: Optional[Union[str, List[str]]] = None, | |
num_images_per_prompt: Optional[int] = 1, | |
eta: float = 0.0, | |
generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None, | |
output_type: Optional[str] = "pil", | |
return_dict: bool = True, | |
cross_attention_kwargs: Optional[Dict[str, Any]] = None, | |
original_size: Optional[Tuple[int, int]] = None, | |
crops_coords_top_left: Optional[List[List[Tuple[int, int]]]] = None, | |
target_size: Optional[Tuple[int, int]] = None, | |
negative_original_size: Optional[Tuple[int, int]] = None, | |
negative_crops_coords_top_left: Optional[List[List[Tuple[int, int]]]] = None, | |
negative_target_size: Optional[Tuple[int, int]] = None, | |
clip_skip: Optional[int] = None, | |
tile_height: Optional[int] = 1024, | |
tile_width: Optional[int] = 1024, | |
tile_row_overlap: Optional[int] = 128, | |
tile_col_overlap: Optional[int] = 128, | |
guidance_scale_tiles: Optional[List[List[float]]] = None, | |
seed_tiles: Optional[List[List[int]]] = None, | |
seed_tiles_mode: Optional[Union[str, List[List[str]]]] = "full", | |
seed_reroll_regions: Optional[List[Tuple[int, int, int, int, int]]] = None, | |
**kwargs, | |
): | |
r""" | |
Function invoked when calling the pipeline for generation. | |
Args: | |
prompt (`str` or `List[str]`, *optional*): | |
The prompt or prompts to guide the image generation. If not defined, one has to pass `prompt_embeds`. | |
instead. | |
height (`int`, *optional*, defaults to self.unet.config.sample_size * self.vae_scale_factor): | |
The height in pixels of the generated image. This is set to 1024 by default for the best results. | |
Anything below 512 pixels won't work well for | |
[stabilityai/stable-diffusion-xl-base-1.0](https://huggingface.co/stabilityai/stable-diffusion-xl-base-1.0) | |
and checkpoints that are not specifically fine-tuned on low resolutions. | |
width (`int`, *optional*, defaults to self.unet.config.sample_size * self.vae_scale_factor): | |
The width in pixels of the generated image. This is set to 1024 by default for the best results. | |
Anything below 512 pixels won't work well for | |
[stabilityai/stable-diffusion-xl-base-1.0](https://huggingface.co/stabilityai/stable-diffusion-xl-base-1.0) | |
and checkpoints that are not specifically fine-tuned on low resolutions. | |
num_inference_steps (`int`, *optional*, defaults to 50): | |
The number of denoising steps. More denoising steps usually lead to a higher quality image at the | |
expense of slower inference. | |
guidance_scale (`float`, *optional*, defaults to 5.0): | |
Guidance scale as defined in [Classifier-Free Diffusion Guidance](https://arxiv.org/abs/2207.12598). | |
`guidance_scale` is defined as `w` of equation 2. of [Imagen | |
Paper](https://arxiv.org/pdf/2205.11487.pdf). Guidance scale is enabled by setting `guidance_scale > | |
1`. Higher guidance scale encourages to generate images that are closely linked to the text `prompt`, | |
usually at the expense of lower image quality. | |
negative_prompt (`str` or `List[str]`, *optional*): | |
The prompt or prompts not to guide the image generation. If not defined, one has to pass | |
`negative_prompt_embeds` instead. Ignored when not using guidance (i.e., ignored if `guidance_scale` is | |
less than `1`). | |
num_images_per_prompt (`int`, *optional*, defaults to 1): | |
The number of images to generate per prompt. | |
eta (`float`, *optional*, defaults to 0.0): | |
Corresponds to parameter eta (η) in the DDIM paper: https://arxiv.org/abs/2010.02502. Only applies to | |
[`schedulers.DDIMScheduler`], will be ignored for others. | |
generator (`torch.Generator` or `List[torch.Generator]`, *optional*): | |
One or a list of [torch generator(s)](https://pytorch.org/docs/stable/generated/torch.Generator.html) | |
to make generation deterministic. | |
output_type (`str`, *optional*, defaults to `"pil"`): | |
The output format of the generate image. Choose between | |
[PIL](https://pillow.readthedocs.io/en/stable/): `PIL.Image.Image` or `np.array`. | |
return_dict (`bool`, *optional*, defaults to `True`): | |
Whether or not to return a [`~pipelines.stable_diffusion_xl.StableDiffusionXLPipelineOutput`] instead | |
of a plain tuple. | |
cross_attention_kwargs (`dict`, *optional*): | |
A kwargs dictionary that if specified is passed along to the `AttentionProcessor` as defined under | |
`self.processor` in | |
[diffusers.models.attention_processor](https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/attention_processor.py). | |
original_size (`Tuple[int]`, *optional*, defaults to (1024, 1024)): | |
If `original_size` is not the same as `target_size` the image will appear to be down- or upsampled. | |
`original_size` defaults to `(height, width)` if not specified. Part of SDXL's micro-conditioning as | |
explained in section 2.2 of | |
[https://huggingface.co/papers/2307.01952](https://huggingface.co/papers/2307.01952). | |
crops_coords_top_left (`List[List[Tuple[int, int]]]`, *optional*, defaults to (0, 0)): | |
`crops_coords_top_left` can be used to generate an image that appears to be "cropped" from the position | |
`crops_coords_top_left` downwards. Favorable, well-centered images are usually achieved by setting | |
`crops_coords_top_left` to (0, 0). Part of SDXL's micro-conditioning as explained in section 2.2 of | |
[https://huggingface.co/papers/2307.01952](https://huggingface.co/papers/2307.01952). | |
target_size (`Tuple[int]`, *optional*, defaults to (1024, 1024)): | |
For most cases, `target_size` should be set to the desired height and width of the generated image. If | |
not specified it will default to `(height, width)`. Part of SDXL's micro-conditioning as explained in | |
section 2.2 of [https://huggingface.co/papers/2307.01952](https://huggingface.co/papers/2307.01952). | |
negative_original_size (`Tuple[int]`, *optional*, defaults to (1024, 1024)): | |
To negatively condition the generation process based on a specific image resolution. Part of SDXL's | |
micro-conditioning as explained in section 2.2 of | |
[https://huggingface.co/papers/2307.01952](https://huggingface.co/papers/2307.01952). For more | |
information, refer to this issue thread: https://github.com/huggingface/diffusers/issues/4208. | |
negative_crops_coords_top_left (`List[List[Tuple[int, int]]]`, *optional*, defaults to (0, 0)): | |
To negatively condition the generation process based on a specific crop coordinates. Part of SDXL's | |
micro-conditioning as explained in section 2.2 of | |
[https://huggingface.co/papers/2307.01952](https://huggingface.co/papers/2307.01952). For more | |
information, refer to this issue thread: https://github.com/huggingface/diffusers/issues/4208. | |
negative_target_size (`Tuple[int]`, *optional*, defaults to (1024, 1024)): | |
To negatively condition the generation process based on a target image resolution. It should be as same | |
as the `target_size` for most cases. Part of SDXL's micro-conditioning as explained in section 2.2 of | |
[https://huggingface.co/papers/2307.01952](https://huggingface.co/papers/2307.01952). For more | |
information, refer to this issue thread: https://github.com/huggingface/diffusers/issues/4208. | |
tile_height (`int`, *optional*, defaults to 1024): | |
Height of each grid tile in pixels. | |
tile_width (`int`, *optional*, defaults to 1024): | |
Width of each grid tile in pixels. | |
tile_row_overlap (`int`, *optional*, defaults to 128): | |
Number of overlapping pixels between tiles in consecutive rows. | |
tile_col_overlap (`int`, *optional*, defaults to 128): | |
Number of overlapping pixels between tiles in consecutive columns. | |
guidance_scale_tiles (`List[List[float]]`, *optional*): | |
Specific weights for classifier-free guidance in each tile. If `None`, the value provided in `guidance_scale` will be used. | |
seed_tiles (`List[List[int]]`, *optional*): | |
Specific seeds for the initialization latents in each tile. These will override the latents generated for the whole canvas using the standard `generator` parameter. | |
seed_tiles_mode (`Union[str, List[List[str]]]`, *optional*, defaults to `"full"`): | |
Mode for seeding tiles, can be `"full"` or `"exclusive"`. If `"full"`, all the latents affected by the tile will be overridden. If `"exclusive"`, only the latents that are exclusively affected by this tile (and no other tiles) will be overridden. | |
seed_reroll_regions (`List[Tuple[int, int, int, int, int]]`, *optional*): | |
A list of tuples in the form of `(start_row, end_row, start_column, end_column, seed)` defining regions in pixel space for which the latents will be overridden using the given seed. Takes priority over `seed_tiles`. | |
**kwargs (`Dict[str, Any]`, *optional*): | |
Additional optional keyword arguments to be passed to the `unet.__call__` and `scheduler.step` functions. | |
Examples: | |
Returns: | |
[`~pipelines.stable_diffusion_xl.StableDiffusionXLTilingPipelineOutput`] or `tuple`: | |
[`~pipelines.stable_diffusion_xl.StableDiffusionXLTilingPipelineOutput`] if `return_dict` is True, otherwise a | |
`tuple`. When returning a tuple, the first element is a list with the generated images. | |
""" | |
# 0. Default height and width to unet | |
height = height or self.default_sample_size * self.vae_scale_factor | |
width = width or self.default_sample_size * self.vae_scale_factor | |
original_size = original_size or (height, width) | |
target_size = target_size or (height, width) | |
negative_original_size = negative_original_size or (height, width) | |
negative_target_size = negative_target_size or (height, width) | |
self._guidance_scale = guidance_scale | |
self._clip_skip = clip_skip | |
self._cross_attention_kwargs = cross_attention_kwargs | |
self._interrupt = False | |
grid_rows = len(prompt) | |
grid_cols = len(prompt[0]) | |
tiles_mode = [mode.value for mode in self.SeedTilesMode] | |
if isinstance(seed_tiles_mode, str): | |
seed_tiles_mode = [[seed_tiles_mode for _ in range(len(row))] for row in prompt] | |
# 1. Check inputs. Raise error if not correct | |
self.check_inputs( | |
prompt, | |
height, | |
width, | |
grid_cols, | |
seed_tiles_mode, | |
tiles_mode, | |
) | |
if seed_reroll_regions is None: | |
seed_reroll_regions = [] | |
batch_size = 1 | |
device = self._execution_device | |
# update crops coords list | |
crops_coords_top_left = _get_crops_coords_list(grid_rows, grid_cols, tile_width) | |
if negative_original_size is not None and negative_target_size is not None: | |
negative_crops_coords_top_left = _get_crops_coords_list(grid_rows, grid_cols, tile_width) | |
# update height and width tile size and tile overlap size | |
height = tile_height + (grid_rows - 1) * (tile_height - tile_row_overlap) | |
width = tile_width + (grid_cols - 1) * (tile_width - tile_col_overlap) | |
# 3. Encode input prompt | |
lora_scale = ( | |
self.cross_attention_kwargs.get("scale", None) if self.cross_attention_kwargs is not None else None | |
) | |
text_embeddings = [ | |
[ | |
self.encode_prompt( | |
prompt=col, | |
device=device, | |
num_images_per_prompt=num_images_per_prompt, | |
do_classifier_free_guidance=self.do_classifier_free_guidance, | |
negative_prompt=negative_prompt, | |
prompt_embeds=None, | |
negative_prompt_embeds=None, | |
pooled_prompt_embeds=None, | |
negative_pooled_prompt_embeds=None, | |
lora_scale=lora_scale, | |
clip_skip=self.clip_skip, | |
) | |
for col in row | |
] | |
for row in prompt | |
] | |
# 3. Prepare latents | |
latents_shape = (batch_size, self.unet.config.in_channels, height // 8, width // 8) | |
dtype = text_embeddings[0][0][0].dtype | |
latents = randn_tensor(latents_shape, generator=generator, device=device, dtype=dtype) | |
# 3.1 overwrite latents for specific tiles if provided | |
if seed_tiles is not None: | |
for row in range(grid_rows): | |
for col in range(grid_cols): | |
if (seed_tile := seed_tiles[row][col]) is not None: | |
mode = seed_tiles_mode[row][col] | |
if mode == self.SeedTilesMode.FULL.value: | |
row_init, row_end, col_init, col_end = _tile2latent_indices( | |
row, col, tile_width, tile_height, tile_row_overlap, tile_col_overlap | |
) | |
else: | |
row_init, row_end, col_init, col_end = _tile2latent_exclusive_indices( | |
row, | |
col, | |
tile_width, | |
tile_height, | |
tile_row_overlap, | |
tile_col_overlap, | |
grid_rows, | |
grid_cols, | |
) | |
tile_generator = torch.Generator(device).manual_seed(seed_tile) | |
tile_shape = (latents_shape[0], latents_shape[1], row_end - row_init, col_end - col_init) | |
latents[:, :, row_init:row_end, col_init:col_end] = torch.randn( | |
tile_shape, generator=tile_generator, device=device | |
) | |
# 3.2 overwrite again for seed reroll regions | |
for row_init, row_end, col_init, col_end, seed_reroll in seed_reroll_regions: | |
row_init, row_end, col_init, col_end = _pixel2latent_indices( | |
row_init, row_end, col_init, col_end | |
) # to latent space coordinates | |
reroll_generator = torch.Generator(device).manual_seed(seed_reroll) | |
region_shape = (latents_shape[0], latents_shape[1], row_end - row_init, col_end - col_init) | |
latents[:, :, row_init:row_end, col_init:col_end] = torch.randn( | |
region_shape, generator=reroll_generator, device=device | |
) | |
# 4. Prepare timesteps | |
accepts_offset = "offset" in set(inspect.signature(self.scheduler.set_timesteps).parameters.keys()) | |
extra_set_kwargs = {} | |
if accepts_offset: | |
extra_set_kwargs["offset"] = 1 | |
timesteps, num_inference_steps = retrieve_timesteps( | |
self.scheduler, num_inference_steps, device, None, None, **extra_set_kwargs | |
) | |
# if we use LMSDiscreteScheduler, let's make sure latents are multiplied by sigmas | |
if isinstance(self.scheduler, LMSDiscreteScheduler): | |
latents = latents * self.scheduler.sigmas[0] | |
# 5. Prepare extra step kwargs. TODO: Logic should ideally just be moved out of the pipeline | |
extra_step_kwargs = self.prepare_extra_step_kwargs(generator, eta) | |
# 6. Prepare added time ids & embeddings | |
# text_embeddings order: prompt_embeds, negative_prompt_embeds, pooled_prompt_embeds, negative_pooled_prompt_embeds | |
embeddings_and_added_time = [] | |
for row in range(grid_rows): | |
addition_embed_type_row = [] | |
for col in range(grid_cols): | |
# extract generated values | |
prompt_embeds = text_embeddings[row][col][0] | |
negative_prompt_embeds = text_embeddings[row][col][1] | |
pooled_prompt_embeds = text_embeddings[row][col][2] | |
negative_pooled_prompt_embeds = text_embeddings[row][col][3] | |
add_text_embeds = pooled_prompt_embeds | |
if self.text_encoder_2 is None: | |
text_encoder_projection_dim = int(pooled_prompt_embeds.shape[-1]) | |
else: | |
text_encoder_projection_dim = self.text_encoder_2.config.projection_dim | |
add_time_ids = self._get_add_time_ids( | |
original_size, | |
crops_coords_top_left[row][col], | |
target_size, | |
dtype=prompt_embeds.dtype, | |
text_encoder_projection_dim=text_encoder_projection_dim, | |
) | |
if negative_original_size is not None and negative_target_size is not None: | |
negative_add_time_ids = self._get_add_time_ids( | |
negative_original_size, | |
negative_crops_coords_top_left[row][col], | |
negative_target_size, | |
dtype=prompt_embeds.dtype, | |
text_encoder_projection_dim=text_encoder_projection_dim, | |
) | |
else: | |
negative_add_time_ids = add_time_ids | |
if self.do_classifier_free_guidance: | |
prompt_embeds = torch.cat([negative_prompt_embeds, prompt_embeds], dim=0) | |
add_text_embeds = torch.cat([negative_pooled_prompt_embeds, add_text_embeds], dim=0) | |
add_time_ids = torch.cat([negative_add_time_ids, add_time_ids], dim=0) | |
prompt_embeds = prompt_embeds.to(device) | |
add_text_embeds = add_text_embeds.to(device) | |
add_time_ids = add_time_ids.to(device).repeat(batch_size * num_images_per_prompt, 1) | |
addition_embed_type_row.append((prompt_embeds, add_text_embeds, add_time_ids)) | |
embeddings_and_added_time.append(addition_embed_type_row) | |
num_warmup_steps = max(len(timesteps) - num_inference_steps * self.scheduler.order, 0) | |
# 7. Mask for tile weights strength | |
tile_weights = self._gaussian_weights(tile_width, tile_height, batch_size, device, torch.float32) | |
# 8. Denoising loop | |
self._num_timesteps = len(timesteps) | |
with self.progress_bar(total=num_inference_steps) as progress_bar: | |
for i, t in enumerate(timesteps): | |
# Diffuse each tile | |
noise_preds = [] | |
for row in range(grid_rows): | |
noise_preds_row = [] | |
for col in range(grid_cols): | |
if self.interrupt: | |
continue | |
px_row_init, px_row_end, px_col_init, px_col_end = _tile2latent_indices( | |
row, col, tile_width, tile_height, tile_row_overlap, tile_col_overlap | |
) | |
tile_latents = latents[:, :, px_row_init:px_row_end, px_col_init:px_col_end] | |
# expand the latents if we are doing classifier free guidance | |
latent_model_input = ( | |
torch.cat([tile_latents] * 2) if self.do_classifier_free_guidance else tile_latents | |
) | |
latent_model_input = self.scheduler.scale_model_input(latent_model_input, t) | |
# predict the noise residual | |
added_cond_kwargs = { | |
"text_embeds": embeddings_and_added_time[row][col][1], | |
"time_ids": embeddings_and_added_time[row][col][2], | |
} | |
with torch.amp.autocast(device.type, dtype=dtype, enabled=dtype != self.unet.dtype): | |
noise_pred = self.unet( | |
latent_model_input, | |
t, | |
encoder_hidden_states=embeddings_and_added_time[row][col][0], | |
cross_attention_kwargs=self.cross_attention_kwargs, | |
added_cond_kwargs=added_cond_kwargs, | |
return_dict=False, | |
)[0] | |
# perform guidance | |
if self.do_classifier_free_guidance: | |
noise_pred_uncond, noise_pred_text = noise_pred.chunk(2) | |
guidance = ( | |
guidance_scale | |
if guidance_scale_tiles is None or guidance_scale_tiles[row][col] is None | |
else guidance_scale_tiles[row][col] | |
) | |
noise_pred_tile = noise_pred_uncond + guidance * (noise_pred_text - noise_pred_uncond) | |
noise_preds_row.append(noise_pred_tile) | |
noise_preds.append(noise_preds_row) | |
# Stitch noise predictions for all tiles | |
noise_pred = torch.zeros(latents.shape, device=device) | |
contributors = torch.zeros(latents.shape, device=device) | |
# Add each tile contribution to overall latents | |
for row in range(grid_rows): | |
for col in range(grid_cols): | |
px_row_init, px_row_end, px_col_init, px_col_end = _tile2latent_indices( | |
row, col, tile_width, tile_height, tile_row_overlap, tile_col_overlap | |
) | |
noise_pred[:, :, px_row_init:px_row_end, px_col_init:px_col_end] += ( | |
noise_preds[row][col] * tile_weights | |
) | |
contributors[:, :, px_row_init:px_row_end, px_col_init:px_col_end] += tile_weights | |
# Average overlapping areas with more than 1 contributor | |
noise_pred /= contributors | |
noise_pred = noise_pred.to(dtype) | |
# compute the previous noisy sample x_t -> x_t-1 | |
latents_dtype = latents.dtype | |
latents = self.scheduler.step(noise_pred, t, latents, **extra_step_kwargs, return_dict=False)[0] | |
if latents.dtype != latents_dtype: | |
if torch.backends.mps.is_available(): | |
# some platforms (eg. apple mps) misbehave due to a pytorch bug: https://github.com/pytorch/pytorch/pull/99272 | |
latents = latents.to(latents_dtype) | |
# update progress bar | |
if i == len(timesteps) - 1 or ((i + 1) > num_warmup_steps and (i + 1) % self.scheduler.order == 0): | |
progress_bar.update() | |
if XLA_AVAILABLE: | |
xm.mark_step() | |
if not output_type == "latent": | |
# make sure the VAE is in float32 mode, as it overflows in float16 | |
needs_upcasting = self.vae.dtype == torch.float16 and self.vae.config.force_upcast | |
if needs_upcasting: | |
self.upcast_vae() | |
latents = latents.to(next(iter(self.vae.post_quant_conv.parameters())).dtype) | |
elif latents.dtype != self.vae.dtype: | |
if torch.backends.mps.is_available(): | |
# some platforms (eg. apple mps) misbehave due to a pytorch bug: https://github.com/pytorch/pytorch/pull/99272 | |
self.vae = self.vae.to(latents.dtype) | |
# unscale/denormalize the latents | |
# denormalize with the mean and std if available and not None | |
has_latents_mean = hasattr(self.vae.config, "latents_mean") and self.vae.config.latents_mean is not None | |
has_latents_std = hasattr(self.vae.config, "latents_std") and self.vae.config.latents_std is not None | |
if has_latents_mean and has_latents_std: | |
latents_mean = ( | |
torch.tensor(self.vae.config.latents_mean).view(1, 4, 1, 1).to(latents.device, latents.dtype) | |
) | |
latents_std = ( | |
torch.tensor(self.vae.config.latents_std).view(1, 4, 1, 1).to(latents.device, latents.dtype) | |
) | |
latents = latents * latents_std / self.vae.config.scaling_factor + latents_mean | |
else: | |
latents = latents / self.vae.config.scaling_factor | |
image = self.vae.decode(latents, return_dict=False)[0] | |
# cast back to fp16 if needed | |
if needs_upcasting: | |
self.vae.to(dtype=torch.float16) | |
else: | |
image = latents | |
if not output_type == "latent": | |
# apply watermark if available | |
if self.watermark is not None: | |
image = self.watermark.apply_watermark(image) | |
image = self.image_processor.postprocess(image, output_type=output_type) | |
# Offload all models | |
self.maybe_free_model_hooks() | |
if not return_dict: | |
return (image,) | |
return StableDiffusionXLPipelineOutput(images=image) | |