Delete app-backup.py
Browse files- app-backup.py +0 -338
app-backup.py
DELETED
@@ -1,338 +0,0 @@
|
|
1 |
-
import random
|
2 |
-
import gradio as gr
|
3 |
-
import numpy as np
|
4 |
-
import spaces
|
5 |
-
import torch
|
6 |
-
from diffusers import AutoencoderKL
|
7 |
-
from mixture_tiling_sdxl import StableDiffusionXLTilingPipeline
|
8 |
-
|
9 |
-
MAX_SEED = np.iinfo(np.int32).max
|
10 |
-
SCHEDULERS = [
|
11 |
-
"LMSDiscreteScheduler",
|
12 |
-
"DEISMultistepScheduler",
|
13 |
-
"HeunDiscreteScheduler",
|
14 |
-
"EulerAncestralDiscreteScheduler",
|
15 |
-
"EulerDiscreteScheduler",
|
16 |
-
"DPMSolverMultistepScheduler",
|
17 |
-
"DPMSolverMultistepScheduler-Karras",
|
18 |
-
"DPMSolverMultistepScheduler-Karras-SDE",
|
19 |
-
"UniPCMultistepScheduler"
|
20 |
-
]
|
21 |
-
|
22 |
-
# 모델 로딩: VAE 및 타일링 파이프라인 초기화
|
23 |
-
vae = AutoencoderKL.from_pretrained(
|
24 |
-
"madebyollin/sdxl-vae-fp16-fix", torch_dtype=torch.float16
|
25 |
-
).to("cuda")
|
26 |
-
|
27 |
-
model_id = "stablediffusionapi/yamermix-v8-vae"
|
28 |
-
pipe = StableDiffusionXLTilingPipeline.from_pretrained(
|
29 |
-
model_id,
|
30 |
-
torch_dtype=torch.float16,
|
31 |
-
vae=vae,
|
32 |
-
use_safetensors=False, # for yammermix
|
33 |
-
).to("cuda")
|
34 |
-
|
35 |
-
pipe.enable_model_cpu_offload() # VRAM이 제한된 경우 사용
|
36 |
-
pipe.enable_vae_tiling()
|
37 |
-
pipe.enable_vae_slicing()
|
38 |
-
|
39 |
-
#region functions
|
40 |
-
def select_scheduler(scheduler_name):
|
41 |
-
scheduler_parts = scheduler_name.split("-")
|
42 |
-
scheduler_class_name = scheduler_parts[0]
|
43 |
-
add_kwargs = {
|
44 |
-
"beta_start": 0.00085,
|
45 |
-
"beta_end": 0.012,
|
46 |
-
"beta_schedule": "scaled_linear",
|
47 |
-
"num_train_timesteps": 1000
|
48 |
-
}
|
49 |
-
if len(scheduler_parts) > 1:
|
50 |
-
add_kwargs["use_karras_sigmas"] = True
|
51 |
-
if len(scheduler_parts) > 2:
|
52 |
-
add_kwargs["algorithm_type"] = "sde-dpmsolver++"
|
53 |
-
import diffusers
|
54 |
-
scheduler_cls = getattr(diffusers, scheduler_class_name)
|
55 |
-
scheduler = scheduler_cls.from_config(pipe.scheduler.config, **add_kwargs)
|
56 |
-
return scheduler
|
57 |
-
|
58 |
-
@spaces.GPU
|
59 |
-
def predict(left_prompt, center_prompt, right_prompt, negative_prompt, left_gs, center_gs, right_gs,
|
60 |
-
overlap_pixels, steps, generation_seed, scheduler, tile_height, tile_width, target_height, target_width):
|
61 |
-
global pipe
|
62 |
-
print(f"Using scheduler: {scheduler}...")
|
63 |
-
pipe.scheduler = select_scheduler(scheduler)
|
64 |
-
generator = torch.Generator("cuda").manual_seed(generation_seed)
|
65 |
-
|
66 |
-
target_height = int(target_height)
|
67 |
-
target_width = int(target_width)
|
68 |
-
tile_height = int(tile_height)
|
69 |
-
tile_width = int(tile_width)
|
70 |
-
|
71 |
-
image = pipe(
|
72 |
-
prompt=[[left_prompt, center_prompt, right_prompt]],
|
73 |
-
negative_prompt=negative_prompt,
|
74 |
-
tile_height=tile_height,
|
75 |
-
tile_width=tile_width,
|
76 |
-
tile_row_overlap=0,
|
77 |
-
tile_col_overlap=overlap_pixels,
|
78 |
-
guidance_scale_tiles=[[left_gs, center_gs, right_gs]],
|
79 |
-
height=target_height,
|
80 |
-
width=target_width,
|
81 |
-
generator=generator,
|
82 |
-
num_inference_steps=steps,
|
83 |
-
)["images"][0]
|
84 |
-
return image
|
85 |
-
|
86 |
-
def calc_tile_size(target_height, target_width, overlap_pixels, max_tile_width_size=1280):
|
87 |
-
num_cols = 3
|
88 |
-
num_rows = 1
|
89 |
-
min_tile_dimension = 8
|
90 |
-
reduction_step = 8
|
91 |
-
max_tile_height_size = 1024
|
92 |
-
best_tile_width = 0
|
93 |
-
best_tile_height = 0
|
94 |
-
best_adjusted_target_width = 0
|
95 |
-
best_adjusted_target_height = 0
|
96 |
-
found_valid_solution = False
|
97 |
-
|
98 |
-
tile_width = max_tile_width_size
|
99 |
-
tile_height = max_tile_height_size
|
100 |
-
while tile_width >= min_tile_dimension:
|
101 |
-
horizontal_borders = num_cols - 1
|
102 |
-
total_horizontal_overlap = overlap_pixels * horizontal_borders
|
103 |
-
adjusted_target_width = tile_width * num_cols - total_horizontal_overlap
|
104 |
-
|
105 |
-
vertical_borders = num_rows - 1
|
106 |
-
total_vertical_overlap = overlap_pixels * vertical_borders
|
107 |
-
adjusted_target_height = tile_height * num_rows - total_vertical_overlap
|
108 |
-
|
109 |
-
if tile_width <= max_tile_width_size and adjusted_target_width <= target_width:
|
110 |
-
if adjusted_target_width > best_adjusted_target_width:
|
111 |
-
best_tile_width = tile_width
|
112 |
-
best_adjusted_target_width = adjusted_target_width
|
113 |
-
found_valid_solution = True
|
114 |
-
tile_width -= reduction_step
|
115 |
-
|
116 |
-
if found_valid_solution:
|
117 |
-
tile_width = best_tile_width
|
118 |
-
tile_height = max_tile_height_size
|
119 |
-
while tile_height >= min_tile_dimension:
|
120 |
-
horizontal_borders = num_cols - 1
|
121 |
-
total_horizontal_overlap = overlap_pixels * horizontal_borders
|
122 |
-
adjusted_target_width = tile_width * num_cols - total_horizontal_overlap
|
123 |
-
|
124 |
-
vertical_borders = num_rows - 1
|
125 |
-
total_vertical_overlap = overlap_pixels * vertical_borders
|
126 |
-
adjusted_target_height = tile_height * num_rows - total_vertical_overlap
|
127 |
-
|
128 |
-
if tile_height <= max_tile_height_size and adjusted_target_height <= target_height:
|
129 |
-
if adjusted_target_height > best_adjusted_target_height:
|
130 |
-
best_tile_height = tile_height
|
131 |
-
best_adjusted_target_height = adjusted_target_height
|
132 |
-
tile_height -= reduction_step
|
133 |
-
|
134 |
-
new_target_height = best_adjusted_target_height
|
135 |
-
new_target_width = best_adjusted_target_width
|
136 |
-
tile_width = best_tile_width
|
137 |
-
tile_height = best_tile_height
|
138 |
-
|
139 |
-
print("--- TILE SIZE CALCULATED VALUES ---")
|
140 |
-
print(f"Requested Overlap Pixels: {overlap_pixels}")
|
141 |
-
print(f"Tile Height (max {max_tile_height_size}, divisible by 8): {tile_height}")
|
142 |
-
print(f"Tile Width (max {max_tile_width_size}, divisible by 8): {tile_width}")
|
143 |
-
print(f"Columns: {num_cols} | Rows: {num_rows}")
|
144 |
-
print(f"Original Target: {target_height} x {target_width}")
|
145 |
-
print(f"Adjusted Target: {new_target_height} x {new_target_width}\n")
|
146 |
-
|
147 |
-
return new_target_height, new_target_width, tile_height, tile_width
|
148 |
-
|
149 |
-
def do_calc_tile(target_height, target_width, overlap_pixels, max_tile_size):
|
150 |
-
new_target_height, new_target_width, tile_height, tile_width = calc_tile_size(target_height, target_width, overlap_pixels, max_tile_size)
|
151 |
-
return gr.update(value=tile_height), gr.update(value=tile_width), gr.update(value=new_target_height), gr.update(value=new_target_width)
|
152 |
-
|
153 |
-
def clear_result():
|
154 |
-
return gr.update(value=None)
|
155 |
-
|
156 |
-
def randomize_seed_fn(generation_seed: int, randomize_seed: bool) -> int:
|
157 |
-
if randomize_seed:
|
158 |
-
generation_seed = random.randint(0, MAX_SEED)
|
159 |
-
return generation_seed
|
160 |
-
#endregion
|
161 |
-
|
162 |
-
# CSS 개선: 배경, 여백, 그림자 및 예제 영역 중앙 배치
|
163 |
-
css = """
|
164 |
-
body { background-color: #f0f2f5; }
|
165 |
-
.gradio-container {
|
166 |
-
background: #ffffff;
|
167 |
-
border-radius: 15px;
|
168 |
-
padding: 20px;
|
169 |
-
box-shadow: 0 4px 10px rgba(0,0,0,0.1);
|
170 |
-
}
|
171 |
-
.gradio-container h1 { color: #333333; }
|
172 |
-
.fillable { width: 95% !important; max-width: unset !important; }
|
173 |
-
#examples_container {
|
174 |
-
margin: auto;
|
175 |
-
width: 90%;
|
176 |
-
}
|
177 |
-
#examples_row {
|
178 |
-
justify-content: center;
|
179 |
-
}
|
180 |
-
"""
|
181 |
-
|
182 |
-
title = """
|
183 |
-
<h1 align="center" style="margin-bottom: 0.2em;">Mixture-of-Diffusers for SDXL Tiling Pipeline 🤗</h1>
|
184 |
-
<p align="center" style="font-size:1.1em; color:#555;">
|
185 |
-
좌/중앙/우 각 영역에 다른 프롬프트를 적용하여 타일링 이미지를 생성합니다.<br>
|
186 |
-
아래 예제를 클릭하면 입력창에 값이 채워집니다.
|
187 |
-
</p>
|
188 |
-
"""
|
189 |
-
|
190 |
-
with gr.Blocks(css=css, title="SDXL Tiling Pipeline") as app:
|
191 |
-
gr.Markdown(title)
|
192 |
-
|
193 |
-
with gr.Row():
|
194 |
-
# 좌/중앙/우 프롬프트 및 결과 영역
|
195 |
-
with gr.Column(scale=7):
|
196 |
-
generate_button = gr.Button("Generate", elem_id="generate_btn")
|
197 |
-
with gr.Row():
|
198 |
-
with gr.Column(variant="panel"):
|
199 |
-
gr.Markdown("### Left Region")
|
200 |
-
left_prompt = gr.Textbox(lines=4, placeholder="예: 울창한 숲과 햇살이 비추는 나무...", label="Left Prompt")
|
201 |
-
left_gs = gr.Slider(minimum=0, maximum=15, value=7, step=1, label="Left CFG Scale")
|
202 |
-
with gr.Column(variant="panel"):
|
203 |
-
gr.Markdown("### Center Region")
|
204 |
-
center_prompt = gr.Textbox(lines=4, placeholder="예: 잔잔한 호수와 반짝이는 수면...", label="Center Prompt")
|
205 |
-
center_gs = gr.Slider(minimum=0, maximum=15, value=7, step=1, label="Center CFG Scale")
|
206 |
-
with gr.Column(variant="panel"):
|
207 |
-
gr.Markdown("### Right Region")
|
208 |
-
right_prompt = gr.Textbox(lines=4, placeholder="예: 웅장한 산맥과 하늘을 가르는 구름...", label="Right Prompt")
|
209 |
-
right_gs = gr.Slider(minimum=0, maximum=15, value=7, step=1, label="Right CFG Scale")
|
210 |
-
with gr.Row():
|
211 |
-
negative_prompt = gr.Textbox(
|
212 |
-
lines=2,
|
213 |
-
label="Negative Prompt",
|
214 |
-
placeholder="예: blurry, low resolution, artifacts, poor details",
|
215 |
-
value="blurry, low resolution, artifacts, poor details"
|
216 |
-
)
|
217 |
-
with gr.Row():
|
218 |
-
result = gr.Image(label="Generated Image", show_label=True, format="png", interactive=False, scale=1)
|
219 |
-
|
220 |
-
# 사이드바: 파라미터 및 타일 크기 계산
|
221 |
-
with gr.Sidebar(label="Parameters", open=True):
|
222 |
-
gr.Markdown("### Generation Parameters")
|
223 |
-
with gr.Row():
|
224 |
-
height = gr.Slider(label="Target Height", value=1024, step=8, minimum=512, maximum=1024)
|
225 |
-
width = gr.Slider(label="Target Width", value=1280, step=8, minimum=512, maximum=3840)
|
226 |
-
overlap = gr.Slider(minimum=0, maximum=512, value=128, step=8, label="Tile Overlap")
|
227 |
-
max_tile_size = gr.Dropdown(label="Max Tile Size", choices=[1024, 1280], value=1280)
|
228 |
-
calc_tile = gr.Button("Calculate Tile Size")
|
229 |
-
with gr.Row():
|
230 |
-
tile_height = gr.Textbox(label="Tile Height", value=1024, interactive=False)
|
231 |
-
tile_width = gr.Textbox(label="Tile Width", value=1024, interactive=False)
|
232 |
-
with gr.Row():
|
233 |
-
new_target_height = gr.Textbox(label="New Image Height", value=1024, interactive=False)
|
234 |
-
new_target_width = gr.Textbox(label="New Image Width", value=1280, interactive=False)
|
235 |
-
with gr.Row():
|
236 |
-
steps = gr.Slider(minimum=1, maximum=50, value=30, step=1, label="Inference Steps")
|
237 |
-
generation_seed = gr.Slider(label="Seed", minimum=0, maximum=MAX_SEED, step=1, value=0)
|
238 |
-
randomize_seed = gr.Checkbox(label="Randomize Seed", value=False)
|
239 |
-
with gr.Row():
|
240 |
-
scheduler = gr.Dropdown(label="Scheduler", choices=SCHEDULERS, value=SCHEDULERS[0])
|
241 |
-
|
242 |
-
# 중앙에 배치된 예제 영역
|
243 |
-
with gr.Row(elem_id="examples_row"):
|
244 |
-
with gr.Column(scale=12, elem_id="examples_container"):
|
245 |
-
gr.Markdown("### Example Prompts")
|
246 |
-
gr.Examples(
|
247 |
-
examples=[
|
248 |
-
[
|
249 |
-
"Lush green forest with sun rays filtering through the canopy",
|
250 |
-
"Crystal clear lake reflecting a vibrant sky",
|
251 |
-
"Majestic mountains with snowy peaks in the distance",
|
252 |
-
"blurry, low resolution, artifacts, poor details",
|
253 |
-
7, 7, 7,
|
254 |
-
128,
|
255 |
-
30,
|
256 |
-
123456789,
|
257 |
-
"UniPCMultistepScheduler",
|
258 |
-
1024, 1280,
|
259 |
-
1024, 1920,
|
260 |
-
1280
|
261 |
-
],
|
262 |
-
[
|
263 |
-
"Vibrant city street with neon signs and bustling crowds",
|
264 |
-
"Sleek modern skyscrapers with digital billboards",
|
265 |
-
"High-speed maglev train gliding over a futuristic urban landscape",
|
266 |
-
"blurry, poorly rendered, low quality, disfigured",
|
267 |
-
8, 8, 8,
|
268 |
-
100,
|
269 |
-
35,
|
270 |
-
987654321,
|
271 |
-
"EulerDiscreteScheduler",
|
272 |
-
1024, 1280,
|
273 |
-
1024, 1920,
|
274 |
-
1280
|
275 |
-
],
|
276 |
-
[
|
277 |
-
"Vibrant abstract strokes with fluid, swirling patterns in cool tones",
|
278 |
-
"Interlocking geometric shapes bursting with color and texture",
|
279 |
-
"Dynamic composition of splattered ink with smooth gradients",
|
280 |
-
"text, watermark, signature, distorted",
|
281 |
-
6, 6, 6,
|
282 |
-
80,
|
283 |
-
25,
|
284 |
-
192837465,
|
285 |
-
"DPMSolverMultistepScheduler-Karras",
|
286 |
-
1024, 1280,
|
287 |
-
1024, 1920,
|
288 |
-
1280
|
289 |
-
],
|
290 |
-
[
|
291 |
-
"Enchanted forest with glowing bioluminescent plants and mystical fog",
|
292 |
-
"Ancient castle with towering spires bathed in moonlight",
|
293 |
-
"Majestic dragon soaring above a starry night sky",
|
294 |
-
"low quality, artifact, deformed, sketchy",
|
295 |
-
9, 9, 9,
|
296 |
-
150,
|
297 |
-
40,
|
298 |
-
1029384756,
|
299 |
-
"DPMSolverMultistepScheduler-Karras-SDE",
|
300 |
-
1024, 1280,
|
301 |
-
1024, 1920,
|
302 |
-
1280
|
303 |
-
]
|
304 |
-
],
|
305 |
-
# 예제 클릭 시 각 입력창에 값이 채워지도록 "inputs" 인수를 추가합니다.
|
306 |
-
inputs=[left_prompt, center_prompt, right_prompt, negative_prompt,
|
307 |
-
left_gs, center_gs, right_gs, overlap, steps, generation_seed,
|
308 |
-
scheduler, tile_height, tile_width, height, width, max_tile_size],
|
309 |
-
cache_examples=False
|
310 |
-
)
|
311 |
-
|
312 |
-
# 이벤트 연결: 타일 사이즈 계산 및 이미지 생성
|
313 |
-
event_calc_tile_size = {
|
314 |
-
"fn": do_calc_tile,
|
315 |
-
"inputs": [height, width, overlap, max_tile_size],
|
316 |
-
"outputs": [tile_height, tile_width, new_target_height, new_target_width]
|
317 |
-
}
|
318 |
-
calc_tile.click(**event_calc_tile_size)
|
319 |
-
|
320 |
-
generate_button.click(
|
321 |
-
fn=clear_result,
|
322 |
-
inputs=None,
|
323 |
-
outputs=result,
|
324 |
-
).then(**event_calc_tile_size).then(
|
325 |
-
fn=randomize_seed_fn,
|
326 |
-
inputs=[generation_seed, randomize_seed],
|
327 |
-
outputs=generation_seed,
|
328 |
-
queue=False,
|
329 |
-
api_name=False,
|
330 |
-
).then(
|
331 |
-
fn=predict,
|
332 |
-
inputs=[left_prompt, center_prompt, right_prompt, negative_prompt,
|
333 |
-
left_gs, center_gs, right_gs, overlap, steps, generation_seed,
|
334 |
-
scheduler, tile_height, tile_width, new_target_height, new_target_width],
|
335 |
-
outputs=result,
|
336 |
-
)
|
337 |
-
|
338 |
-
app.launch(share=False)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|