|
import numpy as np |
|
import torch |
|
import torch.nn.functional as F |
|
from torchvision.transforms.functional import normalize |
|
from huggingface_hub import hf_hub_download |
|
import gradio as gr |
|
from briarmbg import BriaRMBG |
|
import PIL |
|
from PIL import Image |
|
|
|
net = BriaRMBG() |
|
model_path = hf_hub_download("briaai/RMBG-1.4", 'model.pth') |
|
if torch.cuda.is_available(): |
|
net.load_state_dict(torch.load(model_path)) |
|
net = net.cuda() |
|
else: |
|
net.load_state_dict(torch.load(model_path, map_location="cpu")) |
|
net.eval() |
|
|
|
def resize_image(image): |
|
image = image.convert('RGB') |
|
model_input_size = (1024, 1024) |
|
image = image.resize(model_input_size, Image.BILINEAR) |
|
return image |
|
|
|
def process(image): |
|
orig_image = Image.fromarray(image) |
|
w, h = orig_image.size |
|
image = resize_image(orig_image) |
|
im_np = np.array(image) |
|
im_tensor = torch.tensor(im_np, dtype=torch.float32).permute(2, 0, 1) |
|
im_tensor = torch.unsqueeze(im_tensor, 0) |
|
im_tensor = torch.divide(im_tensor, 255.0) |
|
im_tensor = normalize(im_tensor, [0.5, 0.5, 0.5], [1.0, 1.0, 1.0]) |
|
if torch.cuda.is_available(): |
|
im_tensor = im_tensor.cuda() |
|
|
|
result = net(im_tensor) |
|
result = torch.squeeze(F.interpolate(result[0][0], size=(h, w), mode='bilinear'), 0) |
|
ma = torch.max(result) |
|
mi = torch.min(result) |
|
result = (result - mi) / (ma - mi) |
|
im_array = (result * 255).cpu().data.numpy().astype(np.uint8) |
|
pil_im = Image.fromarray(np.squeeze(im_array)) |
|
new_im = Image.new("RGBA", pil_im.size, (0, 0, 0, 0)) |
|
new_im.paste(orig_image, mask=pil_im) |
|
|
|
return new_im |
|
|
|
css = """ |
|
body { |
|
font-family: 'Arial', sans-serif; |
|
margin: 0; |
|
padding: 0; |
|
background-color: #f0f2f5; |
|
color: #333; |
|
} |
|
h1 { |
|
color: #0000ff; |
|
} |
|
p { |
|
color: #000000; |
|
} |
|
.gradio-app, .gradio-content { |
|
background-color: #ffffff; |
|
border-radius: 8px; |
|
border: 1px solid #ccc; |
|
box-shadow: 0 10px 25px 0 rgba(0,0,0,0.1); |
|
padding: 20px; |
|
} |
|
button { |
|
border: none; |
|
color: white; |
|
padding: 10px 20px; |
|
margin: 10px 0; |
|
cursor: pointer; |
|
border-radius: 5px; |
|
background-image: linear-gradient(to right, #6a11cb 0%, #2575fc 100%); |
|
box-shadow: 0 4px 6px rgba(0, 0, 0, 0.2); |
|
transition: all 0.2s ease-in-out; |
|
} |
|
button:hover { |
|
box-shadow: 0 6px 8px rgba(0, 0, 0, 0.3); |
|
} |
|
input, textarea { |
|
border: 2px solid #2575fc; |
|
border-radius: 4px; |
|
padding: 10px; |
|
margin: 10px 0; |
|
width: 100%; |
|
box-sizing: border-box; |
|
box-shadow: inset 0 2px 4px rgba(0, 0, 0, 0.1); |
|
} |
|
.gradio-toolbar { |
|
background-color: #f0f2f5; |
|
} |
|
footer { |
|
visibility: hidden; |
|
} |
|
""" |
|
|
|
title = "Background Removal" |
|
description = """ |
|
This is a demo for BRIA RMBG 1.4 using the BRIA RMBG-1.4 image matting model as a backbone.<br> |
|
Background removal model developed by <a href='https://BRIA.AI' target='_blank'><b>BRIA.AI</b></a>, trained on a carefully selected dataset and is available as an open-source model for non-commercial use.<br> |
|
For a test, upload your image and wait. Read more at the model card <a href='https://huggingface.co/briaai/RMBG-1.4' target='_blank'><b>briaai/RMBG-1.4</b></a>.<br> |
|
""" |
|
|
|
demo = gr.Interface( |
|
fn=process, |
|
inputs=gr.Image(type="pil"), |
|
outputs=gr.Image(type="pil"), |
|
title=title, |
|
description=description, |
|
css=css |
|
) |
|
|
|
if __name__ == "__main__": |
|
demo.launch(share=False) |
|
|