arxivgpt kim
commited on
Update app.py
Browse files
app.py
CHANGED
@@ -4,8 +4,11 @@ import torch.nn.functional as F
|
|
4 |
from torchvision.transforms.functional import normalize
|
5 |
from huggingface_hub import hf_hub_download
|
6 |
import gradio as gr
|
|
|
7 |
from briarmbg import BriaRMBG
|
|
|
8 |
from PIL import Image
|
|
|
9 |
|
10 |
# ๋ชจ๋ธ ์ด๊ธฐํ ๋ฐ ๋ก๋
|
11 |
net = BriaRMBG()
|
@@ -24,7 +27,7 @@ def resize_image(image, model_input_size=(1024, 1024)):
|
|
24 |
|
25 |
def process(image, background_image=None):
|
26 |
# ์ด๋ฏธ์ง ์ค๋น
|
27 |
-
orig_image = Image.fromarray(image).convert("
|
28 |
w, h = orig_im_size = orig_image.size
|
29 |
image = resize_image(orig_image)
|
30 |
im_np = np.array(image)
|
@@ -37,30 +40,33 @@ def process(image, background_image=None):
|
|
37 |
with torch.no_grad():
|
38 |
result = net(im_tensor)
|
39 |
|
40 |
-
# ํ์ฒ๋ฆฌ
|
41 |
result = torch.squeeze(F.interpolate(result[0][0], size=(h, w), mode='bilinear', align_corners=False), 0)
|
42 |
result = torch.sigmoid(result)
|
43 |
-
mask = (result * 255).byte().cpu().numpy()
|
44 |
|
45 |
-
# mask ๋ฐฐ์ด์ด ์์๋๋ก 2์ฐจ์์ธ์ง ํ์ธํ๊ณ , ์๋๋ผ๋ฉด
|
46 |
if mask.ndim > 2:
|
47 |
-
mask = mask.squeeze()
|
48 |
|
49 |
-
# mask ๋ฐฐ์ด์ ๋ช
ํํ uint8๋ก
|
50 |
mask = mask.astype(np.uint8)
|
51 |
|
52 |
-
#
|
53 |
-
|
54 |
-
|
55 |
-
|
56 |
-
|
57 |
|
58 |
# ์ ํ์ ๋ฐฐ๊ฒฝ ์ด๋ฏธ์ง ์ฒ๋ฆฌ
|
59 |
-
if background_image
|
60 |
-
final_image = merge_images(background_image,
|
|
|
|
|
61 |
|
62 |
return final_image
|
63 |
|
|
|
64 |
def merge_images(background_image, foreground_image):
|
65 |
"""
|
66 |
๋ฐฐ๊ฒฝ ์ด๋ฏธ์ง์ ๋ฐฐ๊ฒฝ์ด ์ ๊ฑฐ๋ ์ด๋ฏธ์ง๋ฅผ ํฌ๋ช
ํ๊ฒ ์ฝ์
ํฉ๋๋ค.
|
|
|
4 |
from torchvision.transforms.functional import normalize
|
5 |
from huggingface_hub import hf_hub_download
|
6 |
import gradio as gr
|
7 |
+
from gradio_imageslider import ImageSlider
|
8 |
from briarmbg import BriaRMBG
|
9 |
+
import PIL
|
10 |
from PIL import Image
|
11 |
+
from typing import Tuple
|
12 |
|
13 |
# ๋ชจ๋ธ ์ด๊ธฐํ ๋ฐ ๋ก๋
|
14 |
net = BriaRMBG()
|
|
|
27 |
|
28 |
def process(image, background_image=None):
|
29 |
# ์ด๋ฏธ์ง ์ค๋น
|
30 |
+
orig_image = Image.fromarray(image).convert("RGB")
|
31 |
w, h = orig_im_size = orig_image.size
|
32 |
image = resize_image(orig_image)
|
33 |
im_np = np.array(image)
|
|
|
40 |
with torch.no_grad():
|
41 |
result = net(im_tensor)
|
42 |
|
43 |
+
# ํ์ฒ๋ฆฌ
|
44 |
result = torch.squeeze(F.interpolate(result[0][0], size=(h, w), mode='bilinear', align_corners=False), 0)
|
45 |
result = torch.sigmoid(result)
|
46 |
+
mask = (result * 255).byte().cpu().numpy()
|
47 |
|
48 |
+
# mask ๋ฐฐ์ด์ด ์์๋๋ก 2์ฐจ์์ธ์ง ํ์ธํ๊ณ , ์๋๋ผ๋ฉด ์กฐ์
|
49 |
if mask.ndim > 2:
|
50 |
+
mask = mask.squeeze()
|
51 |
|
52 |
+
# mask ๋ฐฐ์ด์ ๋ช
ํํ uint8๋ก ๋ณํ
|
53 |
mask = mask.astype(np.uint8)
|
54 |
|
55 |
+
# ๋ง์คํฌ๋ฅผ ์ํ ์ฑ๋๋ก ์ฌ์ฉํ์ฌ ์ต์ข
์ด๋ฏธ์ง ์์ฑ
|
56 |
+
orig_image = orig_image.convert("RGBA")
|
57 |
+
final_image = Image.new("RGBA", orig_image.size, (0, 0, 0, 0))
|
58 |
+
mask_image = Image.fromarray(mask, mode='L')
|
59 |
+
foreground_image = Image.composite(orig_image, final_image, mask_image)
|
60 |
|
61 |
# ์ ํ์ ๋ฐฐ๊ฒฝ ์ด๋ฏธ์ง ์ฒ๋ฆฌ
|
62 |
+
if background_image:
|
63 |
+
final_image = merge_images(background_image, foreground_image)
|
64 |
+
else:
|
65 |
+
final_image = foreground_image
|
66 |
|
67 |
return final_image
|
68 |
|
69 |
+
|
70 |
def merge_images(background_image, foreground_image):
|
71 |
"""
|
72 |
๋ฐฐ๊ฒฝ ์ด๋ฏธ์ง์ ๋ฐฐ๊ฒฝ์ด ์ ๊ฑฐ๋ ์ด๋ฏธ์ง๋ฅผ ํฌ๋ช
ํ๊ฒ ์ฝ์
ํฉ๋๋ค.
|