|
import numpy as np |
|
import re |
|
import os |
|
import argparse |
|
|
|
|
|
def natural_sort(l): |
|
convert = lambda text: int(text) if text.isdigit() else text.lower() |
|
alphanum_key = lambda key: [ convert(c) for c in re.split('([0-9]+)', key) ] |
|
|
|
return sorted(l, key = alphanum_key) |
|
|
|
|
|
def angular_distance_np(R_hat, R): |
|
|
|
|
|
if R_hat.shape == (3,3): |
|
R_hat = R_hat[np.newaxis,:] |
|
if R.shape == (3,3): |
|
R = R[np.newaxis,:] |
|
n = R.shape[0] |
|
trace_idx = [0,4,8] |
|
trace = np.matmul(R_hat, R.transpose(0,2,1)).reshape(n,-1)[:,trace_idx].sum(1) |
|
metric = np.arccos(((trace - 1)/2).clip(-1,1)) / np.pi * 180.0 |
|
|
|
return metric |
|
|
|
|
|
def main(): |
|
parser = argparse.ArgumentParser(description='Rotation and translation metric.') |
|
parser.add_argument('--trans1', type=str) |
|
parser.add_argument('--trans2', type=str) |
|
|
|
args = parser.parse_args() |
|
|
|
transFiles1 = natural_sort([file for file in os.listdir(args.trans1) if (file.find("npy") != -1 )]) |
|
transFiles1 = [os.path.join(args.trans1, img) for img in transFiles1] |
|
|
|
transFiles2 = natural_sort([file for file in os.listdir(args.trans2) if (file.find("npy") != -1 )]) |
|
transFiles2 = [os.path.join(args.trans2, img) for img in transFiles2] |
|
|
|
|
|
|
|
|
|
for T1_file, T2_file in zip(transFiles1, transFiles2): |
|
T1 = np.load(T1_file) |
|
T2 = np.load(T2_file) |
|
print("Shapes: ", T1.shape, T2.shape) |
|
|
|
for i in range(T1.shape[2]): |
|
R1 = T1[:3, :3, i] |
|
R2 = T2[:3, :3, i] |
|
t1 = T1[:4, -1, i] |
|
t2 = T2[:4, -1, i] |
|
|
|
R_norm = angular_distance_np(R1.reshape(1,3,3), R2.reshape(1,3,3))[0] |
|
|
|
print("R norm:", R_norm) |
|
exit(1) |
|
|
|
|
|
if __name__ == "__main__": |
|
main() |