Vincentqyw commited on
Commit
b74523b
·
1 Parent(s): fdf53cb

update: return matching score

Browse files
hloc/match_dense.py CHANGED
@@ -353,6 +353,8 @@ def match_images(model, image_0, image_1, conf, device="cpu"):
353
  }
354
  if "mconf" in pred.keys():
355
  ret["mconf"] = pred["mconf"].cpu().numpy()
 
 
356
  else:
357
  ret["mconf"] = np.ones_like(kpts0.cpu().numpy()[:, 0])
358
  if "lines0" in pred.keys() and "lines1" in pred.keys():
 
353
  }
354
  if "mconf" in pred.keys():
355
  ret["mconf"] = pred["mconf"].cpu().numpy()
356
+ elif "scores" in pred.keys(): #adapting loftr
357
+ ret["mconf"] = pred["scores"].cpu().numpy()
358
  else:
359
  ret["mconf"] = np.ones_like(kpts0.cpu().numpy()[:, 0])
360
  if "lines0" in pred.keys() and "lines1" in pred.keys():
hloc/matchers/aspanformer.py CHANGED
@@ -93,8 +93,9 @@ class ASpanFormer(BaseModel):
93
  "image1": data["image1"],
94
  }
95
  self.net(data_, online_resize=True)
96
- corr0 = data_["mkpts0_f"]
97
- corr1 = data_["mkpts1_f"]
98
- pred = {}
99
- pred["keypoints0"], pred["keypoints1"] = corr0, corr1
 
100
  return pred
 
93
  "image1": data["image1"],
94
  }
95
  self.net(data_, online_resize=True)
96
+ pred = {
97
+ "keypoints0": data_["mkpts0_f"],
98
+ "keypoints1": data_["mkpts1_f"],
99
+ "mconf": data_["mconf"],
100
+ }
101
  return pred
hloc/matchers/loftr.py CHANGED
@@ -2,7 +2,7 @@ import torch
2
  import warnings
3
  from kornia.feature.loftr.loftr import default_cfg
4
  from kornia.feature import LoFTR as LoFTR_
5
-
6
  from ..utils.base_model import BaseModel
7
 
8
 
@@ -18,7 +18,7 @@ class LoFTR(BaseModel):
18
  cfg = default_cfg
19
  cfg["match_coarse"]["thr"] = conf["match_threshold"]
20
  self.net = LoFTR_(pretrained=conf["weights"], config=cfg)
21
-
22
  def _forward(self, data):
23
  # For consistency with hloc pairs, we refine kpts in image0!
24
  rename = {
 
2
  import warnings
3
  from kornia.feature.loftr.loftr import default_cfg
4
  from kornia.feature import LoFTR as LoFTR_
5
+ from hloc import logger
6
  from ..utils.base_model import BaseModel
7
 
8
 
 
18
  cfg = default_cfg
19
  cfg["match_coarse"]["thr"] = conf["match_threshold"]
20
  self.net = LoFTR_(pretrained=conf["weights"], config=cfg)
21
+ logger.info(f"Loaded LoFTR with weights {conf['weights']}")
22
  def _forward(self, data):
23
  # For consistency with hloc pairs, we refine kpts in image0!
24
  rename = {
hloc/matchers/roma.py CHANGED
@@ -85,7 +85,10 @@ class Roma(BaseModel):
85
  kpts1, kpts2 = self.net.to_pixel_coordinates(
86
  matches, H_A, W_A, H_B, W_B
87
  )
88
- pred = {}
89
- pred["keypoints0"], pred["keypoints1"] = kpts1, kpts2
90
- pred["mconf"] = certainty
 
 
 
91
  return pred
 
85
  kpts1, kpts2 = self.net.to_pixel_coordinates(
86
  matches, H_A, W_A, H_B, W_B
87
  )
88
+ pred = {
89
+ "keypoints0": kpts1,
90
+ "keypoints1": kpts2,
91
+ "mconf": certainty,
92
+ }
93
+
94
  return pred
hloc/matchers/topicfm.py CHANGED
@@ -34,12 +34,9 @@ class TopicFM(BaseModel):
34
  "image1": data["image1"],
35
  }
36
  self.net(data_)
37
- mkpts0 = data_["mkpts0_f"]
38
- mkpts1 = data_["mkpts1_f"]
39
- mconf = data_["mconf"]
40
- total_n_matches = len(data_["mkpts0_f"])
41
-
42
- pred = {}
43
- pred["keypoints0"], pred["keypoints1"] = mkpts0, mkpts1
44
- pred["mconf"] = mconf
45
  return pred
 
34
  "image1": data["image1"],
35
  }
36
  self.net(data_)
37
+ pred = {
38
+ "keypoints0": data_["mkpts0_f"],
39
+ "keypoints1": data_["mkpts1_f"],
40
+ "mconf": data_["mconf"],
41
+ }
 
 
 
42
  return pred