File size: 10,899 Bytes
550665c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
import torch
from torch import nn
from torch.nn import CrossEntropyLoss

from transformers import (
    AlbertForSequenceClassification as SeqClassification,
    AlbertPreTrainedModel,
    AlbertModel,
    AlbertConfig    
)

from .modeling_outputs import (
    QuestionAnsweringModelOutput,
    QuestionAnsweringNaModelOutput
)

class AlbertForSequenceClassification(SeqClassification):
    model_type = "albert"
    
class AlbertForQuestionAnsweringAVPool(AlbertPreTrainedModel):
    _keys_to_ignore_on_load_unexpected = [r"pooler"]
    model_type = "albert"
    
    
    def __init__(self, config):
        super().__init__(config)
        self.num_labels = config.num_labels
        
        # The `has_ans` module is a linear layer with dropout and a linear layer.
        # The purpose of this module is to predict whether the question can be
        # answered with a "yes" or "no" given the context. It is trained to output
        # a probability distribution over the two classes.
        #
        # In other words, it predicts the probability of the existence of an
        # answer given the context.
        #
        # If the model predicts a high probability of "yes", it means the model
        # thinks the question can be answered. If the model predicts a high
        # probability of "no", it means the model thinks the question cannot be
        # answered.
        #
        # The output of this module is used in the loss computation to
        # encourage the model to output a probability distribution over the two
        # classes.
        #
        # The input to the module is the first word of the sequence (the
        # [CLS] token).
        #
        # The output of the module is a tensor of shape (batch_size,
        # num_labels) where each element is a probability.

        # Initialize weights  
        self.albert = AlbertModel(config)
        self.qa_outputs = nn.Linear(config.hidden_size, config.num_labels)
        self.has_ans = nn.Sequential(
            nn.Dropout(p=config.hidden_dropout_prob),
            nn.Linear(config.hidden_size, self.num_labels)
        )
              
        self.post_init()
    
    def forward(

        self,

        input_ids=None,

        attention_mask=None,

        token_type_ids=None,

        position_ids=None,

        head_mask=None,

        inputs_embeds=None,

        start_positions=None,

        end_positions=None,

        is_impossibles=None,

        output_attentions=None,

        output_hidden_states=None,

        return_dict=None,

    ):
        return_dict = return_dict if return_dict is not None else self.config.use_return_dict
        
        
        # outputs shape: (loss(optional, returned when labels is provided, else None), logits, hidden states, attentions)
        outputs = self.albert(
            input_ids=input_ids,
            attention_mask=attention_mask,
            token_type_ids=token_type_ids,
            position_ids=position_ids,
            head_mask=head_mask,
            inputs_embeds=inputs_embeds,
            output_attentions=output_attentions,
            output_hidden_states=output_hidden_states,
        )
        
        # sequence_output shape: (batch_size, sequence_length, hidden_size)
        sequence_output = outputs[0]
        
        # logits shape: (batch_size, sequence_length, 2)
        logits = self.qa_outputs(sequence_output)

        # Split logits to start_logits and end_logits
        start_logits, end_logits = logits.split(1, dim=-1)

        # Note that we use .contiguous() to ensure that the tensor is stored in a contiguous block of memory
        # start_logits shape: (batch_size, sequence_length, 1)
        # end_logits shape: (batch_size, sequence_length, 1)
        start_logits = start_logits.squeeze(-1).contiguous()
        end_logits = end_logits.squeeze(-1).contiguous()
        
        # Get the index of the first word
        first_word = sequence_output[:, 0, :].contiguous()
        
        has_logits = self.has_ans(first_word)
        
        total_loss = None
        
        if (start_positions is not None and
            end_positions is not None and
            is_impossibles is not None):
            # If we are on multi-GPU, split add a dimension
            if len(start_positions.size()) > 1:
                start_positions = start_positions.squeeze(-1)
            if len(end_positions.size() > 1):
                end_positions = end_positions.squeeze(-1)
            if len(is_impossibles.size()) > 1:
                is_impossibles = is_impossibles.squeeze(-1)
                
            # sometimes the start/end positions are outside our model inputs, we ignore these terms
            # clamping the values in the tensor to be within the range of 0 to ignored_index. 
            # This means that any value less than 0 or greater than or equal to ignored_index will be set to 0.
            ignored_index = start_logits.size(1)
            start_positions.clamp_(0, ignored_index)
            end_positions.clamp_(0, ignored_index)
            is_impossibles.clamp_(0, ignored_index)
            
            loss_fct = CrossEntropyLoss(ignore_index=ignored_index)
            start_loss = loss_fct(start_logits, start_positions)
            end_loss = loss_fct(end_logits, end_positions)
            span_loss = start_loss + end_loss
            
            # Internal Front Verification (I-FV)
            # alpha1 = 1.0, alpha2 = 0.5
            choice_loss = loss_fct(has_logits, is_impossibles.long())
            total_loss = (span_loss + choice_loss) / 3
        
        if not return_dict:
            output = (
                start_logits,
                end_logits,
                has_logits,
            ) + outputs[2:] # add hidden states and attention if they are here
            return ((total_loss,) + output) if total_loss is not None else output
        
        return QuestionAnsweringNaModelOutput(
            loss=total_loss,
            start_logits=start_logits,
            end_logits=end_logits,
            has_logits=has_logits,
            hidden_states=outputs.hidden_states,
            attentions=outputs.attentions,
        )
            
    
class AlbertForQuestionAnsweringAVPoolBCEv3(AlbertPreTrainedModel):
    _keys_to_ignore_on_load_unexpected = [r"pooler"]
    model_type = "albert"
    
    def __init__(self, config):
        super.__init__(config)
        self.num_labels = config.num_labels
        
        self.albert = AlbertModel(config)
        self.qa_outputs = nn.Linear(config.hidden_size, config.num_labels)
        self.has_ans1 = nn.Sequential(
            nn.Dropout(p=config.hidden_dropout_prob),
            nn.Linear(config.hidden_size, 2),
        )
        self.has_ans2 = nn.Sequential(
            nn.Dropout(p=config.hidden_dropout_prob),
            nn.Linear(config.hidden_size, 1),
        )
        
        # Initialize weights
        self.post_init()
        
    
    def forward(

        self,

        input_ids=None,

        attention_mask=None,

        token_type_ids=None,

        position_ids=None,

        head_mask=None,

        inputs_embeds=None,

        start_positions=None,

        end_positions=None,

        is_impossibles=None,

        output_attentions=None,

        output_hidden_states=None,

        return_dict=None,

    ):
        return_dict = return_dict if return_dict is not None else self.config.use_return_dict
        
        outputs = self.albert(
            input_ids=input_ids,
            attention_mask=attention_mask,
            token_type_ids=token_type_ids,
            position_ids=position_ids,
            head_mask=head_mask,
            inputs_embeds=inputs_embeds,
            output_attentions=output_attentions,
            output_hidden_states=output_hidden_states,
        )
        
        sequence_output = outputs[0]
        
        logits = self.qa_outputs(sequence_output)
        start_logits, end_logits = logits.split(1, dim=-1)
        start_logits = start_logits.squeeze(-1).contiguous()
        end_logits = end_logits.squeeze(-1).contiguous()
        
        first_word = sequence_output[:, 0, :]
        
        has_logits1 = self.has_ans1(first_word).squeeze(-1)
        has_logits2 = self.has_ans2(first_word).squeeze(-1)
        
        total_loss = None
        if (
            start_positions is not None and 
            end_positions is not None and 
            is_impossibles is not None
        ):
            # If we are on multi-GPU, split add a dimension
            if len(start_positions.size()) > 1:
                start_positions = start_positions.squeeze(-1)
            if len(end_positions.size()) > 1:
                end_positions = end_positions.squeeze(-1)
            if len(is_impossibles.size()) > 1:
                is_impossibles = is_impossibles.squeeze(-1)
            # sometimes the start/end positions are outside our model inputs, we ignore these terms
            ignored_index = start_logits.size(1)
            start_positions.clamp_(0, ignored_index)
            end_positions.clamp_(0, ignored_index)
            is_impossibles.clamp_(0, ignored_index)
            is_impossibles = is_impossibles.to(
                dtype=next(self.parameters()).dtype) # fp16 compatibility
            
            loss_fct = CrossEntropyLoss(ignore_index=ignored_index)
            start_loss = loss_fct(start_logits, start_positions)
            end_loss = loss_fct(end_logits, end_positions)
            span_loss = start_loss + end_loss
            
            # Internal Front Verification (I-FV)
            choice_fct = nn.BCEWithLogitsLoss()
            mse_loss_fct = nn.MSELoss()
            choice_loss1 = loss_fct(has_logits1, is_impossibles.long())
            choice_loss2 = choice_fct(has_logits2, is_impossibles)
            choice_loss3 = mse_loss_fct(has_logits2.view(-1), is_impossibles.view(-1))
            choice_loss = choice_loss1 + choice_loss2 + choice_loss3
            
            total_loss = (span_loss + choice_loss) / 5
        
        if not return_dict:
            output = (
                start_logits,
                end_logits,
                has_logits1,
            ) + outputs[2:] # hidden_states, attentions
            return ((total_loss,) + output) if total_loss is not None else output
        
        return QuestionAnsweringNaModelOutput(
            loss=total_loss,
            start_logits=start_logits,
            end_logits=end_logits,
            has_logits=has_logits1,
            hidden_states=outputs.hidden_states,
            attentions=outputs.attentions,
        )