Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -0,0 +1,67 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from transformers import AutoProcessor, AutoModelForCausalLM, AutoConfig
|
2 |
+
import gradio as gr
|
3 |
+
import torch
|
4 |
+
|
5 |
+
# # Load the processor and model
|
6 |
+
processor = AutoProcessor.from_pretrained("microsoft/git-base")
|
7 |
+
# config = AutoConfig.from_pretrained("./adapter_config.json")
|
8 |
+
# # model = AutoModelForCausalLM.from_pretrained("microsoft/git-base")
|
9 |
+
|
10 |
+
# model_path = "./adapter_model.safetensors"
|
11 |
+
# model = AutoModelForCausalLM.from_pretrained(model_path)
|
12 |
+
|
13 |
+
from transformers import AutoModelForCausalLM
|
14 |
+
from peft import PeftModel
|
15 |
+
|
16 |
+
#Base model on your local filesystem
|
17 |
+
base_model_dir = "microsoft/git-base"
|
18 |
+
base_model = AutoModelForCausalLM.from_pretrained(base_model_dir)
|
19 |
+
|
20 |
+
#Adaptor directory on your local filesystem
|
21 |
+
adaptor_dir = "./"
|
22 |
+
merged_model = PeftModel.from_pretrained(base_model,adaptor_dir)
|
23 |
+
|
24 |
+
merged_model = merged_model.merge_and_unload()
|
25 |
+
merged_model.save_pretrained("./Merged-Model/")
|
26 |
+
|
27 |
+
model = merged_model
|
28 |
+
|
29 |
+
|
30 |
+
def predict(image):
|
31 |
+
try:
|
32 |
+
# Prepare the image using the processor
|
33 |
+
inputs = processor(images=image, return_tensors="pt")
|
34 |
+
|
35 |
+
# Move inputs to the appropriate device
|
36 |
+
device = "cuda" if torch.cuda.is_available() else "cpu"
|
37 |
+
inputs = {key: value.to(device) for key, value in inputs.items()}
|
38 |
+
model.to(device)
|
39 |
+
|
40 |
+
# Generate the caption
|
41 |
+
outputs = model.generate(**inputs)
|
42 |
+
|
43 |
+
# Decode the generated caption
|
44 |
+
caption = processor.batch_decode(outputs, skip_special_tokens=True)[0]
|
45 |
+
|
46 |
+
return caption
|
47 |
+
|
48 |
+
except Exception as e:
|
49 |
+
print("Error during prediction:", str(e))
|
50 |
+
return "Error: " + str(e)
|
51 |
+
|
52 |
+
# https://www.gradio.app/guides
|
53 |
+
with gr.Blocks() as demo:
|
54 |
+
image = gr.Image(type="pil")
|
55 |
+
predict_btn = gr.Button("Predict", variant="primary")
|
56 |
+
output = gr.Label(label="Generated Caption")
|
57 |
+
|
58 |
+
inputs = [image]
|
59 |
+
outputs = [output]
|
60 |
+
|
61 |
+
predict_btn.click(predict, inputs=inputs, outputs=outputs)
|
62 |
+
|
63 |
+
if __name__ == "__main__":
|
64 |
+
demo.launch() # Local machine only
|
65 |
+
# demo.launch(server_name="0.0.0.0") # LAN access to local machine
|
66 |
+
# demo.launch(share=True) # Public access to local machine
|
67 |
+
|