Spaces:
Sleeping
Sleeping
Farit Shamardanov
commited on
Commit
·
fde8fc4
1
Parent(s):
ec3a891
Add application file
Browse files- app.py +246 -0
- requirements.txt +7 -0
app.py
ADDED
@@ -0,0 +1,246 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from shutil import which
|
2 |
+
import gradio as gr
|
3 |
+
from transformers import pipeline
|
4 |
+
from moviepy.editor import VideoFileClip, AudioFileClip, concatenate_audioclips
|
5 |
+
from TTS.api import TTS # Coqui TTS
|
6 |
+
import librosa
|
7 |
+
import soundfile as sf
|
8 |
+
import os
|
9 |
+
import nltk
|
10 |
+
import torch
|
11 |
+
from pydub import AudioSegment
|
12 |
+
|
13 |
+
nltk.download('punkt')
|
14 |
+
nltk.download('punkt_tab')
|
15 |
+
|
16 |
+
device = 0 if torch.cuda.is_available() else -1 # Использовать GPU (0) или CPU (-1)
|
17 |
+
print("Используемый девайс:", "GPU" if device == 0 else "CPU")
|
18 |
+
|
19 |
+
# Удаление мата из текста
|
20 |
+
def detect_profanity_with_transformer(text):
|
21 |
+
profanity_detector = pipeline("text-classification", model="cardiffnlp/twitter-roberta-base-offensive", device=device)
|
22 |
+
words = text.split()
|
23 |
+
cleaned_words = []
|
24 |
+
|
25 |
+
for word in words:
|
26 |
+
result = profanity_detector(word)
|
27 |
+
if any(label["label"] == "OFFENSIVE" and label["score"] > 0.8 for label in result):
|
28 |
+
cleaned_words.append("***") # Заменяем мат на звездочки
|
29 |
+
else:
|
30 |
+
cleaned_words.append(word)
|
31 |
+
|
32 |
+
return " ".join(cleaned_words)
|
33 |
+
|
34 |
+
# Функция для извлечения аудио из видео
|
35 |
+
def extract_audio_from_video(video_path, audio_path="temp_audio.wav"):
|
36 |
+
video = VideoFileClip(video_path)
|
37 |
+
video.audio.write_audiofile(audio_path)
|
38 |
+
return audio_path
|
39 |
+
|
40 |
+
# Получение транскрипции и временных меток
|
41 |
+
def get_transcription_with_timestamps(audio_path):
|
42 |
+
asr = pipeline("automatic-speech-recognition", model="openai/whisper-large-v2", device=device)
|
43 |
+
result = asr(audio_path, return_timestamps=True)
|
44 |
+
transcription = result["text"]
|
45 |
+
timestamps = result["chunks"] # Содержит временные метки для каждого слова или фрагмента
|
46 |
+
return transcription, timestamps
|
47 |
+
|
48 |
+
# Разбиение текста на фрагменты по временным меткам
|
49 |
+
def split_text_by_timestamps(timestamps):
|
50 |
+
text_fragments = []
|
51 |
+
for chunk in timestamps:
|
52 |
+
# Проверяем наличие ключа 'timestamp' и корректности данных
|
53 |
+
if "timestamp" in chunk and "text" in chunk:
|
54 |
+
start_time, end_time = chunk["timestamp"]
|
55 |
+
|
56 |
+
# Игнорируем фрагменты с отсутствующими временными метками
|
57 |
+
if start_time is None or end_time is None:
|
58 |
+
continue
|
59 |
+
|
60 |
+
fragment_text = chunk["text"]
|
61 |
+
|
62 |
+
# Добавляем только непустые текстовые фрагменты
|
63 |
+
if fragment_text.strip():
|
64 |
+
text_fragments.append({
|
65 |
+
"start": start_time,
|
66 |
+
"end": end_time,
|
67 |
+
"text": fragment_text.strip()
|
68 |
+
})
|
69 |
+
|
70 |
+
return text_fragments
|
71 |
+
|
72 |
+
# Перевод текста
|
73 |
+
def translate_text_with_transformer(text, source_lang="ru", target_lang="en"):
|
74 |
+
translator = pipeline("translation", model="facebook/m2m100_418M", device=device)
|
75 |
+
translated_result = translator(text, src_lang=source_lang, tgt_lang=target_lang)
|
76 |
+
return translated_result[0]["translation_text"]
|
77 |
+
|
78 |
+
# Синтез аудио с учетом временных меток и синхронизация с видео
|
79 |
+
def synthesize_audio_with_timestamps(original_audio_path, text_fragments, output_audio_path):
|
80 |
+
from TTS.api import TTS
|
81 |
+
from pydub import AudioSegment
|
82 |
+
import os
|
83 |
+
import torch
|
84 |
+
|
85 |
+
tts = TTS(model_name="tts_models/multilingual/multi-dataset/xtts_v2", gpu=torch.cuda.is_available())
|
86 |
+
generated_clips = []
|
87 |
+
|
88 |
+
for fragment in text_fragments:
|
89 |
+
temp_audio_path = "temp_fragment.wav"
|
90 |
+
tts.tts_to_file(
|
91 |
+
text=fragment["text"],
|
92 |
+
file_path=temp_audio_path,
|
93 |
+
speaker_wav=original_audio_path,
|
94 |
+
language="en"
|
95 |
+
)
|
96 |
+
audio_segment = AudioSegment.from_file(temp_audio_path)
|
97 |
+
|
98 |
+
# Подгоняем длину аудио фрагмента к заданным временным рамкам
|
99 |
+
duration = fragment["end"] - fragment["start"]
|
100 |
+
|
101 |
+
# Проверка на нулевую или отрицательную длительность фрагмента
|
102 |
+
if duration <= 0:
|
103 |
+
print(f"Warning: duration is zero or negative for fragment: {fragment['text']}")
|
104 |
+
os.remove(temp_audio_path)
|
105 |
+
continue
|
106 |
+
|
107 |
+
audio_duration = len(audio_segment) / 1000 # Длительность в секундах
|
108 |
+
|
109 |
+
# Проверка на нулевую длительность аудио
|
110 |
+
if audio_duration <= 0:
|
111 |
+
print(f"Warning: audio duration is zero or negative for fragment: {fragment['text']}")
|
112 |
+
os.remove(temp_audio_path)
|
113 |
+
continue
|
114 |
+
|
115 |
+
# Корректировка длительности аудио
|
116 |
+
speed_factor = duration / audio_duration
|
117 |
+
if audio_duration < duration:
|
118 |
+
# Ускорение аудио
|
119 |
+
if speed_factor > 1e-6:
|
120 |
+
audio_segment = audio_segment.speedup(playback_speed=speed_factor)
|
121 |
+
else:
|
122 |
+
print(f"Warning: speed_factor is too small for fragment: {fragment['text']}")
|
123 |
+
os.remove(temp_audio_path)
|
124 |
+
continue
|
125 |
+
elif audio_duration > duration:
|
126 |
+
# Замедление аудио
|
127 |
+
if speed_factor > 1e-6:
|
128 |
+
audio_segment = audio_segment.speedup(playback_speed=1/speed_factor)
|
129 |
+
else:
|
130 |
+
print(f"Warning: speed_factor is too small for fragment: {fragment['text']}")
|
131 |
+
os.remove(temp_audio_path)
|
132 |
+
continue
|
133 |
+
|
134 |
+
# Проверка на слишком короткое аудио после изменения скорости
|
135 |
+
if len(audio_segment) == 0:
|
136 |
+
print(f"Warning: Audio segment became empty after speed adjustment for fragment: {fragment['text']}")
|
137 |
+
os.remove(temp_audio_path)
|
138 |
+
continue
|
139 |
+
|
140 |
+
generated_clips.append(audio_segment)
|
141 |
+
os.remove(temp_audio_path)
|
142 |
+
|
143 |
+
# Объединение всех фрагментов
|
144 |
+
if generated_clips:
|
145 |
+
final_audio = sum(generated_clips)
|
146 |
+
final_audio.export(output_audio_path, format="wav")
|
147 |
+
else:
|
148 |
+
print("No valid audio fragments to process.")
|
149 |
+
|
150 |
+
# Синтез аудио с учетом временных меток без замедления
|
151 |
+
def synthesize_audio_with_timestamps_simple(original_audio_path, text_fragments, output_audio_path):
|
152 |
+
tts = TTS(model_name="tts_models/multilingual/multi-dataset/xtts_v2", gpu=torch.cuda.is_available())
|
153 |
+
generated_clips = []
|
154 |
+
|
155 |
+
for fragment in text_fragments:
|
156 |
+
temp_audio_path = "temp_fragment.wav"
|
157 |
+
tts.tts_to_file(
|
158 |
+
text=fragment["text"],
|
159 |
+
file_path=temp_audio_path,
|
160 |
+
speaker_wav=original_audio_path,
|
161 |
+
language="en"
|
162 |
+
)
|
163 |
+
audio_segment = AudioSegment.from_file(temp_audio_path)
|
164 |
+
|
165 |
+
# Подгоняем длину аудио фрагмента к заданным временным рамкам
|
166 |
+
duration = fragment["end"] - fragment["start"]
|
167 |
+
audio_segment = audio_segment[:int(duration * 1000)] # Приводим к миллисекундам
|
168 |
+
generated_clips.append(audio_segment)
|
169 |
+
os.remove(temp_audio_path)
|
170 |
+
|
171 |
+
# Объединение всех фрагментов
|
172 |
+
final_audio = sum(generated_clips)
|
173 |
+
final_audio.export(output_audio_path, format="wav")
|
174 |
+
|
175 |
+
# Объединение видео с новым аудио
|
176 |
+
def synchronize_video_with_audio(video_path, audio_path, output_path):
|
177 |
+
video = VideoFileClip(video_path)
|
178 |
+
audio = AudioFileClip(audio_path)
|
179 |
+
video = video.set_audio(audio)
|
180 |
+
video.write_videofile(output_path, codec="libx264", audio_codec="aac")
|
181 |
+
|
182 |
+
# Основной процесс
|
183 |
+
def translate_video_with_sync(video_path, output_path, source_lang="ru", target_lang="en"):
|
184 |
+
# Извлечение аудио из видео
|
185 |
+
audio_path = extract_audio_from_video(video_path)
|
186 |
+
|
187 |
+
# Получение транскрипции и временных меток
|
188 |
+
transcription, timestamps = get_transcription_with_timestamps(audio_path)
|
189 |
+
print("Распознанный текст:", transcription)
|
190 |
+
|
191 |
+
# Удаление мата из текста
|
192 |
+
cleaned_transcription = detect_profanity_with_transformer(transcription)
|
193 |
+
print("Очищенный текст:", cleaned_transcription)
|
194 |
+
|
195 |
+
# Перевод текста
|
196 |
+
translated_text = translate_text_with_transformer(cleaned_transcription, source_lang, target_lang)
|
197 |
+
print("Переведенный текст:", translated_text)
|
198 |
+
|
199 |
+
# Разбиение текста по временным меткам
|
200 |
+
text_fragments = split_text_by_timestamps(timestamps)
|
201 |
+
|
202 |
+
# Обновляем текст фрагментов с переводом
|
203 |
+
for fragment in text_fragments:
|
204 |
+
cleaned_text = detect_profanity_with_transformer(fragment["text"])
|
205 |
+
fragment["text"] = translate_text_with_transformer(cleaned_text, source_lang, target_lang)
|
206 |
+
|
207 |
+
# Генерация синхронизированного аудио
|
208 |
+
synthesized_audio_path = "synchronized_audio.wav"
|
209 |
+
synthesize_audio_with_timestamps_simple(audio_path, text_fragments, synthesized_audio_path)
|
210 |
+
|
211 |
+
# Объединение видео с новым аудио
|
212 |
+
synchronize_video_with_audio(video_path, synthesized_audio_path, output_path)
|
213 |
+
|
214 |
+
# Удаление временных файлов
|
215 |
+
os.remove(audio_path)
|
216 |
+
os.remove(synthesized_audio_path)
|
217 |
+
|
218 |
+
print(f"Переведенное видео сохранено в {output_path}")
|
219 |
+
|
220 |
+
# Обёртка для функции `translate_video_with_sync`, чтобы она работала с Gradio
|
221 |
+
def process_video(video_file, source_lang, target_lang):
|
222 |
+
input_path = video_file.name
|
223 |
+
output_path = "translated_video.mp4"
|
224 |
+
|
225 |
+
# Вызов основной функции
|
226 |
+
translate_video_with_sync(video_path=input_path, output_path=output_path, source_lang=source_lang, target_lang=target_lang)
|
227 |
+
|
228 |
+
# Возврат результата
|
229 |
+
return output_path
|
230 |
+
|
231 |
+
# Интерфейс Gradio
|
232 |
+
interface = gr.Interface(
|
233 |
+
fn=process_video,
|
234 |
+
inputs=[
|
235 |
+
gr.File(label="Upload Video", file_types=[".mp4", ".mkv", ".avi"]), # Загрузка видео
|
236 |
+
gr.Textbox(label="Source Language (e.g., 'ru')", value="ru"), # Исходный язык
|
237 |
+
gr.Textbox(label="Target Language (e.g., 'en')", value="en"), # Целевой язык
|
238 |
+
],
|
239 |
+
outputs=gr.File(label="Translated Video"), # Вывод обработанного видео
|
240 |
+
title="Video Translation with Audio Sync",
|
241 |
+
description="Upload a video, specify the source and target languages, and generate a translated video with synchronized audio."
|
242 |
+
)
|
243 |
+
|
244 |
+
# Запуск интерфейса
|
245 |
+
interface.launch()
|
246 |
+
|
requirements.txt
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
gradio
|
2 |
+
gtts
|
3 |
+
sacremoses
|
4 |
+
TTS
|
5 |
+
kenlm
|
6 |
+
pyctcdecode
|
7 |
+
espeakng
|