File size: 16,607 Bytes
2aa6515
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
# This file is based on the GauGAN by Rakshit et. al
# https://keras.io/examples/generative/gaugan/

import tensorflow as tf
import tensorflow_addons as tfa


class SPADE(tf.keras.layers.Layer):
    def __init__(self, filters, epsilon=1e-5, **kwargs):
        super().__init__(**kwargs)
        self.epsilon = epsilon
        self.conv = tf.keras.layers.Conv2D(128, 3, padding="same", activation="relu")
        self.conv_gamma = tf.keras.layers.Conv2D(filters, 3, padding="same")
        self.conv_beta = tf.keras.layers.Conv2D(filters, 3, padding="same")

    def build(self, input_shape):
        self.resize_shape = input_shape[1:3]

    def call(self, input_tensor, raw_mask):
        mask = tf.image.resize(raw_mask, self.resize_shape, method="nearest")
        x = self.conv(mask)
        gamma = self.conv_gamma(x)
        beta = self.conv_beta(x)
        mean, var = tf.nn.moments(input_tensor, axes=(0, 1, 2), keepdims=True)
        std = tf.sqrt(var + self.epsilon)
        normalized = (input_tensor - mean) / std
        output = gamma * normalized + beta
        return output


class ResBlock(tf.keras.layers.Layer):
    def __init__(self, filters, **kwargs):
        super().__init__(**kwargs)
        self.filters = filters

    def build(self, input_shape):
        input_filter = input_shape[-1]
        self.spade_1 = SPADE(input_filter)
        self.spade_2 = SPADE(self.filters)
        self.conv_1 = tf.keras.layers.Conv2D(self.filters, 3, padding="same")
        self.conv_2 = tf.keras.layers.Conv2D(self.filters, 3, padding="same")
        self.learned_skip = False

        if self.filters != input_filter:
            self.learned_skip = True
            self.spade_3 = SPADE(input_filter)
            self.conv_3 = tf.keras.layers.Conv2D(self.filters, 3, padding="same")

    def call(self, input_tensor, mask):
        x = self.spade_1(input_tensor, mask)
        x = self.conv_1(tf.nn.leaky_relu(x, 0.2))
        x = self.spade_2(x, mask)
        x = self.conv_2(tf.nn.leaky_relu(x, 0.2))
        skip = (
            self.conv_3(tf.nn.leaky_relu(self.spade_3(input_tensor, mask), 0.2))
            if self.learned_skip
            else input_tensor
        )
        output = skip + x
        return output


class GaussianSampler(tf.keras.layers.Layer):
    def __init__(self, batch_size, latent_dim, **kwargs):
        super().__init__(**kwargs)
        self.batch_size = batch_size
        self.latent_dim = latent_dim

    def call(self, inputs):
        means, variance = inputs
        epsilon = tf.random.normal(
            shape=(self.batch_size, self.latent_dim), mean=0.0, stddev=1.0
        )
        samples = means + tf.exp(0.5 * variance) * epsilon
        return samples

def downsample(
    channels,
    kernels,
    strides=2,
    apply_norm=True,
    apply_activation=True,
    apply_dropout=False,
):
    block = tf.keras.Sequential()
    block.add(
        tf.keras.layers.Conv2D(
            channels,
            kernels,
            strides=strides,
            padding="same",
            use_bias=False,
            kernel_initializer=tf.keras.initializers.GlorotNormal(),
        )
    )
    if apply_norm:
        block.add(tfa.layers.InstanceNormalization())
    if apply_activation:
        block.add(tf.keras.layers.LeakyReLU(0.2))
    if apply_dropout:
        block.add(tf.keras.layers.Dropout(0.5))
    return block


def build_encoder(image_shape, encoder_downsample_factor=64, latent_dim=256):
    input_image = tf.keras.Input(shape=image_shape)
    x = downsample(encoder_downsample_factor, 3, apply_norm=False)(input_image)
    x = downsample(2 * encoder_downsample_factor, 3)(x)
    x = downsample(4 * encoder_downsample_factor, 3)(x)
    x = downsample(8 * encoder_downsample_factor, 3)(x)
    x = downsample(8 * encoder_downsample_factor, 3)(x)
    x = downsample(8 * encoder_downsample_factor, 3)(x)
    x = downsample(16 * encoder_downsample_factor, 3)(x)
    x = tf.keras.layers.Flatten()(x)
    mean = tf.keras.layers.Dense(latent_dim, name="mean")(x)
    variance = tf.keras.layers.Dense(latent_dim, name="variance")(x)
    return tf.keras.Model(input_image, [mean, variance], name="encoder")


def build_generator(mask_shape, latent_dim=256):
    latent = tf.keras.Input(shape=(latent_dim))
    mask = tf.keras.Input(shape=mask_shape)
    x = tf.keras.layers.Dense(16384)(latent)
    x = tf.keras.layers.Reshape((4, 4, 1024))(x)
    x = ResBlock(filters=1024)(x, mask)
    x = tf.keras.layers.UpSampling2D((2, 2))(x)
    x = ResBlock(filters=1024)(x, mask)
    x = tf.keras.layers.UpSampling2D((2, 2))(x)
    x = ResBlock(filters=1024)(x, mask)
    x = tf.keras.layers.UpSampling2D((2, 2))(x)
    x = ResBlock(filters=512)(x, mask)
    x = tf.keras.layers.UpSampling2D((2, 2))(x)
    x = ResBlock(filters=256)(x, mask)
    x = tf.keras.layers.UpSampling2D((2, 2))(x)
    x = ResBlock(filters=128)(x, mask)
    x = tf.keras.layers.UpSampling2D((2, 2))(x)
    x = ResBlock(filters=64)(x, mask)               # These 2 added layers
    x = tf.keras.layers.UpSampling2D((2, 2))(x)     # to make input 512x512
    x = ResBlock(filters=32)(x, mask)               # These 2 added layers
    x = tf.keras.layers.UpSampling2D((2, 2))(x)     # to make input 1024x1024
    x = tf.nn.leaky_relu(x, 0.2)
    output_image = tf.nn.sigmoid(tf.keras.layers.Conv2D(3, 4, padding="same")(x))
    return tf.keras.Model([latent, mask], output_image, name="generator")


def build_discriminator(image_shape, downsample_factor=64):
    input_image_A = tf.keras.Input(shape=image_shape, name="discriminator_image_A")
    input_image_B = tf.keras.Input(shape=image_shape, name="discriminator_image_B")
    x = tf.keras.layers.Concatenate()([input_image_A, input_image_B])
    x1 = downsample(downsample_factor, 4, apply_norm=False)(x)
    x2 = downsample(2 * downsample_factor, 4)(x1)
    x3 = downsample(4 * downsample_factor, 4)(x2)
    x4 = downsample(8 * downsample_factor, 4)(x3)
    x5 = downsample(8 * downsample_factor, 4)(x4)
    x6 = downsample(8 * downsample_factor, 4)(x5)
    x7 = downsample(16 * downsample_factor, 4)(x6)
    x8 = tf.keras.layers.Conv2D(1, 4)(x7)
    outputs = [x1, x2, x3, x4, x5, x6, x7, x8]
    return tf.keras.Model([input_image_A, input_image_B], outputs)


def generator_loss(y):
    return -tf.reduce_mean(y)


def kl_divergence_loss(mean, variance):
    return -0.5 * tf.reduce_sum(1 + variance - tf.square(mean) - tf.exp(variance))


class FeatureMatchingLoss(tf.keras.losses.Loss):
    def __init__(self, **kwargs):
        super().__init__(**kwargs)
        self.mae = tf.keras.losses.MeanAbsoluteError()

    def call(self, y_true, y_pred):
        loss = 0
        for i in range(len(y_true) - 1):
            loss += self.mae(y_true[i], y_pred[i])
        return loss


class VGGFeatureMatchingLoss(tf.keras.losses.Loss):
    def __init__(self, **kwargs):
        super().__init__(**kwargs)
        self.encoder_layers = [
            "block1_conv1",
            "block2_conv1",
            "block3_conv1",
            "block4_conv1",
            "block5_conv1",
        ]
        self.weights = [1.0 / 32, 1.0 / 16, 1.0 / 8, 1.0 / 4, 1.0]
        vgg = tf.keras.applications.VGG19(include_top=False, weights="imagenet")
        layer_outputs = [vgg.get_layer(x).output for x in self.encoder_layers]
        self.vgg_model = tf.keras.Model(vgg.input, layer_outputs, name="VGG")
        self.mae = tf.keras.losses.MeanAbsoluteError()

    def call(self, y_true, y_pred):
        y_true = tf.keras.applications.vgg19.preprocess_input(127.5 * (y_true + 1))
        y_pred = tf.keras.applications.vgg19.preprocess_input(127.5 * (y_pred + 1))
        real_features = self.vgg_model(y_true)
        fake_features = self.vgg_model(y_pred)
        loss = 0
        for i in range(len(real_features)):
            loss += self.weights[i] * self.mae(real_features[i], fake_features[i])
        return loss


class DiscriminatorLoss(tf.keras.losses.Loss):
    def __init__(self, **kwargs):
        super().__init__(**kwargs)
        self.hinge_loss = tf.keras.losses.Hinge()

    def call(self, y, is_real):
        label = 1.0 if is_real else -1.0
        return self.hinge_loss(label, y)


class GauGAN(tf.keras.Model):
    def __init__(
        self,
        image_size,
        num_classes,
        batch_size,
        latent_dim,
        feature_loss_coeff=10,
        vgg_feature_loss_coeff=0.1,
        kl_divergence_loss_coeff=0.1,
        **kwargs,
    ):
        super().__init__(**kwargs)

        self.image_size = image_size
        self.latent_dim = latent_dim
        self.batch_size = batch_size
        self.num_classes = num_classes
        self.image_shape = (image_size, image_size, 3)
        self.mask_shape = (image_size, image_size, num_classes)
        self.feature_loss_coeff = feature_loss_coeff
        self.vgg_feature_loss_coeff = vgg_feature_loss_coeff
        self.kl_divergence_loss_coeff = kl_divergence_loss_coeff

        self.discriminator = build_discriminator(self.image_shape)
        self.generator = build_generator(self.mask_shape, latent_dim=latent_dim)
        self.encoder = build_encoder(self.image_shape, latent_dim=latent_dim)
        self.sampler = GaussianSampler(batch_size, latent_dim)
        self.patch_size, self.combined_model = self.build_combined_generator()

        self.disc_loss_tracker = tf.keras.metrics.Mean(name="disc_loss")
        self.gen_loss_tracker = tf.keras.metrics.Mean(name="gen_loss")
        self.feat_loss_tracker = tf.keras.metrics.Mean(name="feat_loss")
        self.vgg_loss_tracker = tf.keras.metrics.Mean(name="vgg_loss")
        self.kl_loss_tracker = tf.keras.metrics.Mean(name="kl_loss")

    @property
    def metrics(self):
        return [
            self.disc_loss_tracker,
            self.gen_loss_tracker,
            self.feat_loss_tracker,
            self.vgg_loss_tracker,
            self.kl_loss_tracker,
        ]

    def build_combined_generator(self):
        # This method builds a model that takes as inputs the following:
        # latent vector, one-hot encoded segmentation label map, and
        # a segmentation map. It then (i) generates an image with the generator,
        # (ii) passes the generated images and segmentation map to the discriminator.
        # Finally, the model produces the following outputs: (a) discriminator outputs,
        # (b) generated image.
        # We will be using this model to simplify the implementation.
        self.discriminator.trainable = False
        mask_input = tf.keras.Input(shape=self.mask_shape, name="mask")
        image_input = tf.keras.Input(shape=self.image_shape, name="image")
        latent_input = tf.keras.Input(shape=(self.latent_dim), name="latent")
        generated_image = self.generator([latent_input, mask_input])
        discriminator_output = self.discriminator([image_input, generated_image])
        patch_size = discriminator_output[-1].shape[1]
        combined_model = tf.keras.Model(
            [latent_input, mask_input, image_input],
            [discriminator_output, generated_image],
        )
        return patch_size, combined_model

    def compile(self, gen_lr=1e-4, disc_lr=4e-4, **kwargs):
        super().compile(**kwargs)
        self.generator_optimizer = tf.keras.optimizers.Adam(
            gen_lr, beta_1=0.0, beta_2=0.999
        )
        self.discriminator_optimizer = tf.keras.optimizers.Adam(
            disc_lr, beta_1=0.0, beta_2=0.999
        )
        self.discriminator_loss = DiscriminatorLoss()
        self.feature_matching_loss = FeatureMatchingLoss()
        self.vgg_loss = VGGFeatureMatchingLoss()

    def train_discriminator(self, latent_vector, segmentation_map, real_image, labels):
        fake_images = self.generator([latent_vector, labels])
        with tf.GradientTape() as gradient_tape:
            pred_fake = self.discriminator([segmentation_map, fake_images])[-1]
            pred_real = self.discriminator([segmentation_map, real_image])[-1]
            loss_fake = self.discriminator_loss(pred_fake, False)
            loss_real = self.discriminator_loss(pred_real, True)
            total_loss = 0.5 * (loss_fake + loss_real)

        self.discriminator.trainable = True
        gradients = gradient_tape.gradient(
            total_loss, self.discriminator.trainable_variables
        )
        self.discriminator_optimizer.apply_gradients(
            zip(gradients, self.discriminator.trainable_variables)
        )
        return total_loss

    def train_generator(
        self, latent_vector, segmentation_map, labels, image, mean, variance
    ):
        # Generator learns through the signal provided by the discriminator. During
        # backpropagation, we only update the generator parameters.
        self.discriminator.trainable = False
        with tf.GradientTape() as tape:
            real_d_output = self.discriminator([segmentation_map, image])
            fake_d_output, fake_image = self.combined_model(
                [latent_vector, labels, segmentation_map]
            )
            pred = fake_d_output[-1]

            # Compute generator losses.
            g_loss = generator_loss(pred)
            kl_loss = self.kl_divergence_loss_coeff * kl_divergence_loss(mean, variance)
            vgg_loss = self.vgg_feature_loss_coeff * self.vgg_loss(image, fake_image)
            feature_loss = self.feature_loss_coeff * self.feature_matching_loss(real_d_output, fake_d_output)
            total_loss = g_loss + kl_loss + vgg_loss + feature_loss

        gradients = tape.gradient(total_loss, self.combined_model.trainable_variables)
        self.generator_optimizer.apply_gradients(
            zip(gradients, self.combined_model.trainable_variables)
        )
        return total_loss, feature_loss, vgg_loss, kl_loss

    def train_step(self, data):
        segmentation_map, image, labels = data
        mean, variance = self.encoder(image)
        latent_vector = self.sampler([mean, variance])
        discriminator_loss = self.train_discriminator(
            latent_vector, segmentation_map, image, labels
        )
        (generator_loss, feature_loss, vgg_loss, kl_loss) = self.train_generator(
            latent_vector, segmentation_map, labels, image, mean, variance
        )

        # Report progress.
        self.disc_loss_tracker.update_state(discriminator_loss)
        self.gen_loss_tracker.update_state(generator_loss)
        self.feat_loss_tracker.update_state(feature_loss)
        self.vgg_loss_tracker.update_state(vgg_loss)
        self.kl_loss_tracker.update_state(kl_loss)
        results = {m.name: m.result() for m in self.metrics}
        return results

    def test_step(self, data):
        segmentation_map, image, labels = data
        # Obtain the learned moments of the real image distribution.
        mean, variance = self.encoder(image)

        # Sample a latent from the distribution defined by the learned moments.
        latent_vector = self.sampler([mean, variance])

        # Generate the fake images.
        fake_images = self.generator([latent_vector, labels])

        # Calculate the losses.
        pred_fake = self.discriminator([segmentation_map, fake_images])[-1]
        pred_real = self.discriminator([segmentation_map, image])[-1]
        loss_fake = self.discriminator_loss(pred_fake, False)
        loss_real = self.discriminator_loss(pred_real, True)
        total_discriminator_loss = 0.5 * (loss_fake + loss_real)
        real_d_output = self.discriminator([segmentation_map, image])
        fake_d_output, fake_image = self.combined_model(
            [latent_vector, labels, segmentation_map]
        )
        pred = fake_d_output[-1]
        g_loss = generator_loss(pred)
        kl_loss = self.kl_divergence_loss_coeff * kl_divergence_loss(mean, variance)
        vgg_loss = self.vgg_feature_loss_coeff * self.vgg_loss(image, fake_image)
        feature_loss = self.feature_loss_coeff * self.feature_matching_loss(
            real_d_output, fake_d_output
        )
        total_generator_loss = g_loss + kl_loss + vgg_loss + feature_loss

        # Report progress.
        self.disc_loss_tracker.update_state(total_discriminator_loss)
        self.gen_loss_tracker.update_state(total_generator_loss)
        self.feat_loss_tracker.update_state(feature_loss)
        self.vgg_loss_tracker.update_state(vgg_loss)
        self.kl_loss_tracker.update_state(kl_loss)
        results = {m.name: m.result() for m in self.metrics}
        return results

    def call(self, inputs):
        latent_vectors, labels = inputs
        return self.generator([latent_vectors, labels])