Spaces:
Sleeping
Sleeping
File size: 7,719 Bytes
3b253f9 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 |
import cv2
import numpy as np
import streamlit as st
import tensorflow as tf
from models.cstylegan import cStyleGAN
from models.gaugan import GauGAN
from utils import fix_pred_label, onehot_to_rgb, rgb_to_onehot, color_dict
from skimage import io
@st.cache_resource
def load_cstylegan():
conditional_style_gan = cStyleGAN(start_res=4, target_res=1024)
conditional_style_gan.grow_model(256)
conditional_style_gan.load_weights('checkpoints/cstylegan/cstylegan_256x256.ckpt').expect_partial()
print('Conditional StyleGAN Model Loaded!')
return conditional_style_gan
@st.cache_resource
def load_gaugan(batch_size):
gaugan = GauGAN(image_size=1024, num_classes=7, batch_size=batch_size, latent_dim=512)
gaugan.load_weights('checkpoints/gaugan/gaugan_1024x1024.ckpt').expect_partial()
print('GauGAN Model Loaded!')
return gaugan
def set_seed():
tf.random.set_seed(seed=st.session_state.seed)
def main():
st.title('RetinaGAN')
st.sidebar.columns([1, 5, 1])[1].image(cv2.cvtColor(cv2.imread('assets/sample.jpeg'), cv2.COLOR_BGR2RGB))
st.sidebar.title('Menu')
options = st.sidebar.selectbox('Select Option:', ('About', 'Random', 'Upload your own', 'Retina Template'))
if options == 'About':
st.write('Online Demo for **High-Fidelity Diabetic Retina Fundus Image Synthesis from Freestyle Lesion Maps**')
st.write('''
Paper: https://opg.optica.org/abstract.cfm?uri=boe-14-2-533
Github: http://github.com/farrell236/RetinaGAN
👈 Select an Option From the drop down menu
---
''')
st.write('''
RetinaGAN a two-step process for generating photo-realistic retinal
Fundus images based on artificially generated or free-hand drawn semantic lesion maps.
''')
st.columns([1, 5, 1])[1].image(cv2.cvtColor(cv2.imread('assets/RetinaGAN_pipeline.png'), cv2.COLOR_BGR2RGB),
caption='RetinaGAN Pipeline')
st.write('''
StyleGAN is modified to be conditional in to synthesize pathological lesion maps
based on a specified DR grade (i.e., grades 0 to 4). The DR Grades are defined by the
International Clinical Diabetic Retinopathy (ICDR) disease severity scale;
no apparent retinopathy, {mild, moderate, severe} Non-Proliferative Diabetic Retinopathy (NPDR),
and Proliferative Diabetic Retinopathy (PDR). The output of the network is a binary image with
seven channels instead of class colors to avoid ambiguity.
''')
st.columns([1, 5, 1])[1].image(cv2.cvtColor(cv2.imread('assets/cStyleGAN.png'), cv2.COLOR_BGR2RGB),
caption='Conditional StyleGAN Model')
st.write('''
The generated label maps are then passed through GauGAN, an image-to-image translation network,
to turn them into photo-realistic retina fundus images. The input to the network are one-hot
encoded labels.
''')
st.columns([1, 5, 1])[1].image(cv2.cvtColor(cv2.imread('assets/GauGAN.png'), cv2.COLOR_BGR2RGB),
caption='GauGAN Model')
elif options == 'Random':
st.session_state.seed = st.sidebar.number_input('Sampling Seed:', value=42, on_change=set_seed)
## Load Models
conditional_style_gan = load_cstylegan()
gaugan = load_gaugan(4)
for idx, col in enumerate(st.columns(5)):
z = tf.random.normal((1, conditional_style_gan.z_dim))
w = conditional_style_gan.mapping([z, conditional_style_gan.embedding(idx)])
noise = conditional_style_gan.generate_noise(batch_size=1)
labels = conditional_style_gan.call({"style_code": w, "noise": noise, "alpha": 1.0, "class_label": idx})
labels = tf.keras.backend.softmax(labels)
labels = tf.cast(labels > 0.5, dtype=tf.float32)
labels = tf.image.resize(labels, (1024, 1024), method='nearest')
fixed_labels = fix_pred_label(labels)
fixed_labels = tf.tile(fixed_labels, (4, 1, 1, 1))
latent_vector = tf.random.normal(shape=(4, 512), mean=0.0, stddev=2.0)
fake_image = gaugan.predict([latent_vector, fixed_labels])
with col:
st.text(f'DR Grade {idx}')
st.image(onehot_to_rgb(fixed_labels[0], color_dict), output_format='PNG')
for im in fake_image:
st.image(im)
# Run again?
st.button('Regenerate Images')
elif options == 'Upload your own':
st.session_state.seed = st.sidebar.number_input('Sampling Seed:', value=42, on_change=set_seed)
## Load Models
gaugan = load_gaugan(1)
uploaded_file = st.file_uploader('Choose an image...', type=('png'))
if uploaded_file:
col1, col2 = st.columns(2)
# Read input image with size [H, W, 3] and range (0, 255)
img_array = io.imread(uploaded_file)[..., 0:3]
# Test for valid mask
test_colours = np.unique(img_array.reshape(-1, img_array.shape[2]), axis=0)
if not all([tuple(x) in color_dict.values() for x in test_colours]):
st.info('Mask Contains invalid Class Colours')
return
# Resize image with padding to [1024, 1024, 3]
img_array = tf.image.resize_with_pad(img_array, 1024, 1024, method=tf.image.ResizeMethod.NEAREST_NEIGHBOR)
# Display input image
with col1:
st.image(img_array.numpy(), caption='Uploaded Image')
img_label = rgb_to_onehot(img_array.numpy(), color_dict)[None, ...]
latent_vector = tf.random.normal(shape=(1, 512), mean=0.0, stddev=2.0)
fake_image = gaugan.predict([latent_vector, img_label])[0]
with col2:
st.image(fake_image, caption='Generated Image')
# Run again?
st.button('Regenerate Image')
elif options == 'Retina Template':
st.header('Template')
st.write('Download the Retina Template image below. '
'Using an image editor of your choice, paint lesions '
'into the Vitreous Body and upload it to the model. '
'NB: Images must be stored as lossless PNGs')
template = np.uint8(cv2.circle(np.zeros((1024, 1024, 3)), [512, 512], 512, (255, 255, 255), -1))
st.columns([1, 5, 1])[1].image(template, use_column_width=True, output_format='PNG')
st.header('Class Colours')
cols = st.columns(7)
for idx, cls in enumerate(color_dict):
with cols[idx]:
st.image(image=np.tile(color_dict[cls], (32, 32, 1)),
caption=cls,
output_format='PNG')
# st.caption(color_dict[cls])
data = {'Class Name': [
'Background',
'Hard Exudate',
'Hemohedge',
'Soft Exudate',
'Micro Aneurysms',
'Optical Disc',
'Vitreous Body'],
'RGB Colour': [
str(color_dict[0]), # BG
str(color_dict[1]), # EX
str(color_dict[2]), # HE
str(color_dict[3]), # SE
str(color_dict[4]), # MA
str(color_dict[5]), # OD
str(color_dict[6])] # VB
}
st.table(data)
if __name__ == '__main__':
# tf.config.set_visible_devices([], 'GPU')
main()
|