File size: 7,719 Bytes
3b253f9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
import cv2

import numpy as np
import streamlit as st
import tensorflow as tf

from models.cstylegan import cStyleGAN
from models.gaugan import GauGAN
from utils import fix_pred_label, onehot_to_rgb, rgb_to_onehot, color_dict

from skimage import io


@st.cache_resource
def load_cstylegan():
    conditional_style_gan = cStyleGAN(start_res=4, target_res=1024)
    conditional_style_gan.grow_model(256)
    conditional_style_gan.load_weights('checkpoints/cstylegan/cstylegan_256x256.ckpt').expect_partial()
    print('Conditional StyleGAN Model Loaded!')
    return conditional_style_gan


@st.cache_resource
def load_gaugan(batch_size):
    gaugan = GauGAN(image_size=1024, num_classes=7, batch_size=batch_size, latent_dim=512)
    gaugan.load_weights('checkpoints/gaugan/gaugan_1024x1024.ckpt').expect_partial()
    print('GauGAN Model Loaded!')
    return gaugan


def set_seed():
    tf.random.set_seed(seed=st.session_state.seed)


def main():

    st.title('RetinaGAN')

    st.sidebar.columns([1, 5, 1])[1].image(cv2.cvtColor(cv2.imread('assets/sample.jpeg'), cv2.COLOR_BGR2RGB))

    st.sidebar.title('Menu')
    options = st.sidebar.selectbox('Select Option:', ('About', 'Random', 'Upload your own', 'Retina Template'))

    if options == 'About':
        st.write('Online Demo for **High-Fidelity Diabetic Retina Fundus Image Synthesis from Freestyle Lesion Maps**')

        st.write('''        
        Paper: https://opg.optica.org/abstract.cfm?uri=boe-14-2-533
        
        Github: http://github.com/farrell236/RetinaGAN
        
        👈 Select an Option From the drop down menu

        ---
        ''')

        st.write('''
        RetinaGAN a two-step process for generating photo-realistic retinal 
        Fundus images based on artificially generated or free-hand drawn semantic lesion maps.
        ''')

        st.columns([1, 5, 1])[1].image(cv2.cvtColor(cv2.imread('assets/RetinaGAN_pipeline.png'), cv2.COLOR_BGR2RGB),
                                       caption='RetinaGAN Pipeline')

        st.write('''
        StyleGAN is modified to be conditional in to synthesize pathological lesion maps 
        based on a specified DR grade (i.e., grades 0 to 4). The DR Grades are defined by the 
        International Clinical Diabetic Retinopathy (ICDR) disease severity scale; 
        no apparent retinopathy, {mild, moderate, severe} Non-Proliferative Diabetic Retinopathy (NPDR), 
        and Proliferative Diabetic Retinopathy (PDR). The output of the network is a binary image with 
        seven channels instead of class colors to avoid ambiguity.
        ''')

        st.columns([1, 5, 1])[1].image(cv2.cvtColor(cv2.imread('assets/cStyleGAN.png'), cv2.COLOR_BGR2RGB),
                                       caption='Conditional StyleGAN Model')

        st.write('''
        The generated label maps are then passed through GauGAN, an image-to-image translation network, 
        to turn them into photo-realistic retina fundus images. The input to the network are one-hot 
        encoded labels.
        ''')

        st.columns([1, 5, 1])[1].image(cv2.cvtColor(cv2.imread('assets/GauGAN.png'), cv2.COLOR_BGR2RGB),
                                       caption='GauGAN Model')


    elif options == 'Random':

        st.session_state.seed = st.sidebar.number_input('Sampling Seed:', value=42, on_change=set_seed)

        ## Load Models
        conditional_style_gan = load_cstylegan()
        gaugan = load_gaugan(4)

        for idx, col in enumerate(st.columns(5)):

            z = tf.random.normal((1, conditional_style_gan.z_dim))
            w = conditional_style_gan.mapping([z, conditional_style_gan.embedding(idx)])
            noise = conditional_style_gan.generate_noise(batch_size=1)
            labels = conditional_style_gan.call({"style_code": w, "noise": noise, "alpha": 1.0, "class_label": idx})

            labels = tf.keras.backend.softmax(labels)
            labels = tf.cast(labels > 0.5, dtype=tf.float32)
            labels = tf.image.resize(labels, (1024, 1024), method='nearest')

            fixed_labels = fix_pred_label(labels)
            fixed_labels = tf.tile(fixed_labels, (4, 1, 1, 1))

            latent_vector = tf.random.normal(shape=(4, 512), mean=0.0, stddev=2.0)
            fake_image = gaugan.predict([latent_vector, fixed_labels])

            with col:
                st.text(f'DR Grade {idx}')
                st.image(onehot_to_rgb(fixed_labels[0], color_dict), output_format='PNG')
                for im in fake_image:
                    st.image(im)

        # Run again?
        st.button('Regenerate Images')

    elif options == 'Upload your own':

        st.session_state.seed = st.sidebar.number_input('Sampling Seed:', value=42, on_change=set_seed)

        ## Load Models
        gaugan = load_gaugan(1)

        uploaded_file = st.file_uploader('Choose an image...', type=('png'))

        if uploaded_file:
            col1, col2 = st.columns(2)

            # Read input image with size [H, W, 3] and range (0, 255)
            img_array = io.imread(uploaded_file)[..., 0:3]

            # Test for valid mask
            test_colours = np.unique(img_array.reshape(-1, img_array.shape[2]), axis=0)
            if not all([tuple(x) in color_dict.values() for x in test_colours]):
                st.info('Mask Contains invalid Class Colours')
                return

            # Resize image with padding to [1024, 1024, 3]
            img_array = tf.image.resize_with_pad(img_array, 1024, 1024, method=tf.image.ResizeMethod.NEAREST_NEIGHBOR)

            # Display input image
            with col1:
                st.image(img_array.numpy(), caption='Uploaded Image')

            img_label = rgb_to_onehot(img_array.numpy(), color_dict)[None, ...]
            latent_vector = tf.random.normal(shape=(1, 512), mean=0.0, stddev=2.0)
            fake_image = gaugan.predict([latent_vector, img_label])[0]

            with col2:
                st.image(fake_image, caption='Generated Image')

        # Run again?
        st.button('Regenerate Image')

    elif options == 'Retina Template':

        st.header('Template')

        st.write('Download the Retina Template image below. '
                 'Using an image editor of your choice, paint lesions '
                 'into the Vitreous Body and upload it to the model. '
                 'NB: Images must be stored as lossless PNGs')

        template = np.uint8(cv2.circle(np.zeros((1024, 1024, 3)), [512, 512], 512, (255, 255, 255), -1))
        st.columns([1, 5, 1])[1].image(template, use_column_width=True, output_format='PNG')

        st.header('Class Colours')
        cols = st.columns(7)
        for idx, cls in enumerate(color_dict):
            with cols[idx]:
                st.image(image=np.tile(color_dict[cls], (32, 32, 1)),
                         caption=cls,
                         output_format='PNG')
                # st.caption(color_dict[cls])


        data = {'Class Name': [
                    'Background',
                    'Hard Exudate',
                    'Hemohedge',
                    'Soft Exudate',
                    'Micro Aneurysms',
                    'Optical Disc',
                    'Vitreous Body'],
                'RGB Colour': [
                    str(color_dict[0]),  # BG
                    str(color_dict[1]),  # EX
                    str(color_dict[2]),  # HE
                    str(color_dict[3]),  # SE
                    str(color_dict[4]),  # MA
                    str(color_dict[5]),  # OD
                    str(color_dict[6])]  # VB
                }

        st.table(data)


if __name__ == '__main__':

    # tf.config.set_visible_devices([], 'GPU')

    main()