farrell236 commited on
Commit
70788a3
·
1 Parent(s): 2aa6515

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +49 -1
README.md CHANGED
@@ -10,4 +10,52 @@ pinned: false
10
  license: mit
11
  ---
12
 
13
- Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
10
  license: mit
11
  ---
12
 
13
+ # RetinaGAN
14
+
15
+ Code Repository for: [**High-Fidelity Diabetic Retina Fundus Image Synthesis from Freestyle Lesion Maps**](https://opg.optica.org/abstract.cfm?uri=boe-14-2-533)
16
+
17
+ ## About
18
+
19
+ RetinaGAN a two-step process for generating photo-realistic retinal Fundus images based on artificially generated or free-hand drawn semantic lesion maps.
20
+
21
+ ![](assets/RetinaGAN_pipeline.png)
22
+
23
+ StyleGAN is modified to be conditional in to synthesize pathological lesion maps based on a specified DR grade (i.e., grades 0 to 4). The DR Grades are defined by the International Clinical Diabetic Retinopathy (ICDR) disease severity scale; no apparent retinopathy, {mild, moderate, severe} Non-Proliferative Diabetic Retinopathy (NPDR), and Proliferative Diabetic Retinopathy (PDR). The output of the network is a binary image with seven channels instead of class colors to avoid ambiguity.
24
+
25
+ ![](assets/cStyleGAN.png)
26
+
27
+ The generated label maps are then passed through SPADE, an image-to-image translation network, to turn them into photo-realistic retina fundus images. The input to the network are one-hot encoded labels.
28
+
29
+ ![](assets/GauGAN.png)
30
+
31
+ ## Usage
32
+
33
+ Download model checkpoints (see [here](checkpoints/README.md) for details) and run the model via Streamlit. Start the app via `streamlit run web_demo.py`.
34
+
35
+ ## Example Images
36
+
37
+ Example retina Fundus images synthesised from Conditional StyleGAN generated lesion maps. Top row: synthetically generated lesion maps based on DR grade by Conditional StyleGAN. Other rows: synthetic Fundus images generated by SPADE. Images are generated sequentially with random seed and are **not** cherry picked.
38
+
39
+ | grade 0 | grade 1 | grade 2 | grade 3 | grade 4 |
40
+ |--------------------------------------------------------------|--------------------------------------------------------------|--------------------------------------------------------------|--------------------------------------------------------------|--------------------------------------------------------------|
41
+ | ![](assets/sample_images/mask_class_0_batch_0.png) | ![](assets/sample_images/mask_class_1_batch_0.png) | ![](assets/sample_images/mask_class_2_batch_0.png) | ![](assets/sample_images/mask_class_3_batch_0.png) | ![](assets/sample_images/mask_class_4_batch_0.png) |
42
+ | ![](assets/sample_images/image_class_0_batch_0_sample_0.png) | ![](assets/sample_images/image_class_1_batch_0_sample_0.png) | ![](assets/sample_images/image_class_2_batch_0_sample_0.png) | ![](assets/sample_images/image_class_3_batch_0_sample_0.png) | ![](assets/sample_images/image_class_4_batch_0_sample_0.png) |
43
+ | ![](assets/sample_images/image_class_0_batch_0_sample_1.png) | ![](assets/sample_images/image_class_1_batch_0_sample_1.png) | ![](assets/sample_images/image_class_2_batch_0_sample_1.png) | ![](assets/sample_images/image_class_3_batch_0_sample_1.png) | ![](assets/sample_images/image_class_4_batch_0_sample_1.png) |
44
+
45
+ ## Cite this work
46
+
47
+ If you find this work useful for your research, give us a kudos by citing:
48
+
49
+ ```
50
+ @article{hou2023high,
51
+ title={High-fidelity diabetic retina fundus image synthesis from freestyle lesion maps},
52
+ author={Hou, Benjamin},
53
+ journal={Biomedical Optics Express},
54
+ volume={14},
55
+ number={2},
56
+ pages={533--549},
57
+ year={2023},
58
+ publisher={Optica Publishing Group}
59
+ }
60
+ ```
61
+