File size: 12,629 Bytes
09773e9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
955a80d
09773e9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
175e27a
09773e9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3a7c22b
 
09773e9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3a7c22b
 
 
09773e9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3a7c22b
 
09773e9
 
 
 
 
712e55f
 
09773e9
 
712e55f
 
09773e9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
import gradio as gr
import spaces
import os
import time
from PIL import Image
import functools
import torch
import matplotlib.pyplot as plt
import re
import ast

from model import GeckoForConditionalGeneration, GeckoConfig, GeckoProcessor, chat_gecko, chat_gecko_stream
from model.conversation import conv_templates
from typing import List

from io import StringIO 
import sys

class Capturing(list):
    def __enter__(self):
        self._stdout = sys.stdout
        sys.stdout = self._stringio = StringIO()
        return self
    def __exit__(self, *args):
        self.extend(self._stringio.getvalue().splitlines())
        del self._stringio    # free up some memory
        sys.stdout = self._stdout


# initialization
topk = 1
keyword_criteria = 'word'
positional_information = 'explicit'
vision_feature_select_strategy = 'cls'
patch_picking_strategy = 'last_layer'
cropping_method = 'naive'
crop_size = 384
visualize_topk_patches = False
print_keyword=True
print_topk_patches = True

torch_dtype = torch.float16
attn_implementation = 'sdpa'
device_map = 'cuda'

conv_template = conv_templates['llama_3']

model = 'TIGER-Lab/Mantis-8B-siglip-llama3'
config = GeckoConfig.from_pretrained(model, 
                                    topk=topk,
                                    visualize_topk_patches=visualize_topk_patches,
                                    keyword_criteria=keyword_criteria,
                                    positional_information=positional_information,
                                    vision_feature_select_strategy=vision_feature_select_strategy,
                                    patch_picking_strategy=patch_picking_strategy,
                                    print_keyword=print_keyword)
processor = GeckoProcessor.from_pretrained(model, config=config, use_keyword=True, cropping_method=cropping_method, crop_size=crop_size)
model = GeckoForConditionalGeneration.from_pretrained(
    model, config=config)
model.load_text_encoder(processor)

@spaces.GPU
def generate_stream(text:str, images:List[Image.Image], history: List[dict], **kwargs):
    global processor, model
    model = model.to("cuda")
    if not images:
        images = None
    # print(history)
    print(f'length of images: {len(images)}')
    generator, print_kw, inputs = chat_gecko_stream(text, images, model, processor, history=history, **kwargs)
    texts = []
    # for text, history in chat_gecko_stream(text, images, model, processor, history=history, **kwargs):
    #     yield text
    for text, history in generator:
        texts.append(text)

    # return text
    return texts, print_kw, inputs

@spaces.GPU
def generate(text:str, images:List[Image.Image], history: List[dict], **kwargs):
    global processor, model
    model = model.to("cuda")
    if not images:
        images = None
    generated_text, history = chat_gecko(text, images, model, processor, history=history, **kwargs)
    return generated_text

def enable_next_image(uploaded_images, image):
    uploaded_images.append(image)
    return uploaded_images, gr.MultimodalTextbox(value=None, interactive=False)

def add_message(history, message):
    if message["files"]:
        for file in message["files"]:
            history.append([(file,), None])
    if message["text"]:
        history.append([message["text"], None])
    return history, gr.MultimodalTextbox(value=None)

def print_like_dislike(x: gr.LikeData):
    print(x.index, x.value, x.liked)

def get_chat_history(history):
    chat_history = []
    user_role = conv_template.roles[0]
    assistant_role = conv_template.roles[1]
    for i, message in enumerate(history):
        if isinstance(message[0], str):
            chat_history.append({"role": user_role, "text": message[0]})
            if i != len(history) - 1:
                assert message[1], "The bot message is not provided, internal error"
                chat_history.append({"role": assistant_role, "text": message[1]})
            else:
                assert not message[1], "the bot message internal error, get: {}".format(message[1])
                chat_history.append({"role": assistant_role, "text": ""})
    return chat_history

def get_chat_images(history):
    images = []
    for message in history:
        if isinstance(message[0], tuple):
            images.extend(message[0])
    return images

def bot(history, topk=None):
    print(history)
    cur_messages = {"text": "", "images": []}
    for message in history[::-1]:
        if message[1]:
            break
        if isinstance(message[0], str):
            cur_messages["text"] = message[0] + " " + cur_messages["text"]
        elif isinstance(message[0], tuple):
            cur_messages["images"].extend(message[0])
    cur_messages["text"] = cur_messages["text"].strip()
    cur_messages["images"] = cur_messages["images"][::-1]
    if not cur_messages["text"]:
        raise gr.Error("Please enter a message")
    if cur_messages['text'].count("<image>") < len(cur_messages['images']):
        gr.Warning("The number of images uploaded is more than the number of <image> placeholders in the text. Will automatically prepend <image> to the text.")
        cur_messages['text'] = "<image> "* (len(cur_messages['images']) - cur_messages['text'].count("<image>")) + cur_messages['text']
        history[-1][0] = cur_messages["text"]
    if cur_messages['text'].count("<image>") > len(cur_messages['images']):
        gr.Warning("The number of images uploaded is less than the number of <image> placeholders in the text. Will automatically remove extra <image> placeholders from the text.")
        cur_messages['text'] = cur_messages['text'][::-1].replace("<image>"[::-1], "", cur_messages['text'].count("<image>") - len(cur_messages['images']))[::-1]
        history[-1][0] = cur_messages["text"]
        
    
    
    chat_history = get_chat_history(history)
    chat_images = get_chat_images(history)
    
    generation_kwargs = {
        "max_new_tokens": 4096,
        "num_beams": 1,
        "do_sample": False,
        "topk": topk,
    }
    
    response = generate_stream(None, chat_images, chat_history, **generation_kwargs)
    num_images = len(response[2].pixel_values)
    coords = response[1][-num_images:]
    print_kw = '\n'.join(response[1][:-num_images-1])
    patches_fig = plot_patches(response[2])
    topk_patches_fig = plot_topk_patches(response[2], coords)
    for _output in response[0]:
        history[-1][1] = _output
        time.sleep(0.05)
        # yield history, print_kw, patches_fig, topk_patches_fig
        history

def plot_patches(inputs):
    pixel_value = inputs.pixel_values[0].cpu().numpy()
    x, y = inputs.coords[0][-1][0] + 1, inputs.coords[0][-1][1] + 1

    fig, axes = plt.subplots(y, x, figsize=(x * 4, y * 4))
    for i in range(y):
        for j in range(x):
            axes[i, j].imshow(pixel_value[1 + i * x + j].transpose(1, 2, 0))
            axes[i, j].axis('off')

    return fig

def plot_topk_patches(inputs, selected_coords):
    selected_coords_list = []
    for selected_coord in selected_coords:
        match = re.search(r"\[\[.*\]\]", selected_coord)
        if match:
            coordinates_str = match.group(0)
            # Convert the string representation of the list to an actual list
            coordinates = ast.literal_eval(coordinates_str)
            selected_coords_list.append(coordinates)
    num_images = len(selected_coords_list)
    fig, axes = plt.subplots(num_images, len(selected_coords_list[0])+1, figsize=((len(selected_coords_list[0])+1) * 10, num_images * 10))
    if num_images == 1:
        xmax = inputs.coords[0][-1][0] + 1
        for j in range(len(selected_coords_list[0])+1):
            if j == 0:
                axes[j].imshow(inputs.pixel_values[0][0].cpu().numpy().transpose(1, 2, 0))
                axes[j].axis('off')
                continue
            x, y = selected_coords_list[0][j-1][0], selected_coords_list[0][j-1][1]
            axes[j].imshow(inputs.pixel_values[0][1 + y * xmax + x].cpu().numpy().transpose(1, 2, 0))
            axes[j].axis('off')
    else:
        for i in range(num_images):
            xmax = inputs.coords[i][-1][0] + 1
            for j in range(len(selected_coords_list[0])+1):
                if j == 0:
                    axes[i, j].imshow(inputs.pixel_values[i][0].cpu().numpy().transpose(1, 2, 0))
                    continue
                x, y = selected_coords_list[i][j-1][0], selected_coords_list[i][j-1][1]
                axes[i, j].imshow(inputs.pixel_values[i][1 + y * xmax + x].cpu().numpy().transpose(1, 2, 0))
                axes[i, j].axis('off')
    
    return fig


def build_demo():
    with gr.Blocks() as demo:
        
#         gr.Markdown(""" # Mantis
# Mantis is a multimodal conversational AI model that can chat with users about images and text. It's optimized for multi-image reasoning, where inverleaved text and images can be used to generate responses.
# ### [Paper](https://arxiv.org/abs/2405.01483) | [Github](https://github.com/TIGER-AI-Lab/Mantis) | [Models](https://huggingface.co/collections/TIGER-Lab/mantis-6619b0834594c878cdb1d6e4) | [Dataset](https://huggingface.co/datasets/TIGER-Lab/Mantis-Instruct) | [Website](https://tiger-ai-lab.github.io/Mantis/)            
#         """)
        
#         gr.Markdown("""## Chat with Mantis
#         Mantis supports interleaved text-image input format, where you can simply use the placeholder `<image>` to indicate the position of uploaded images.
#         The model is optimized for multi-image reasoning, while preserving the ability to chat about text and images in a single conversation.
#         (The model currently serving is [πŸ€— TIGER-Lab/Mantis-8B-siglip-llama3](https://huggingface.co/TIGER-Lab/Mantis-8B-siglip-llama3))
#         """)
        
        chatbot = gr.Chatbot(line_breaks=True)
        chat_input = gr.MultimodalTextbox(interactive=True, file_types=["image"], placeholder="Enter message or upload images. Please use <image> to indicate the position of uploaded images", show_label=True)
        
        chat_msg = chat_input.submit(add_message, [chatbot, chat_input], [chatbot, chat_input])
        # print_kw = gr.Textbox(label="keywords")
        # depict_patches = gr.Plot(label="image patches", format="png")
        # depict_topk_patches = gr.Plot(label="top-k image patches", format="png")
        

        # with gr.Accordion(label='Advanced options', open=False):
            # temperature = gr.Slider(
            #     label='Temperature',
            #     minimum=0.1,
            #     maximum=2.0,
            #     step=0.1,
            #     value=0.2,
            #     interactive=True
            # )
            # top_p = gr.Slider(
            #     label='Top-p',
            #     minimum=0.05,
            #     maximum=1.0,
            #     step=0.05,
            #     value=1.0,
            #     interactive=True
            # )
        topk = gr.Slider(
            label='Top-k', 
            minimum=1, 
            maximum=10, 
            step=1, 
            value=1, 
            interactive=True)
            
        bot_msg = chat_msg.success(bot, chatbot, 
                                         chatbot, api_name="bot_response")
        
        chatbot.like(print_like_dislike, None, None)

        with gr.Row():
            send_button = gr.Button("Send")
            clear_button = gr.ClearButton([chatbot, chat_input])

        send_button.click(
            add_message, [chatbot, chat_input], [chatbot, chat_input]
        ).then(
            bot, 
            [chatbot, topk],
            # [chatbot, print_kw, depict_patches, depict_topk_patches], api_name="bot_response"
            chatbot
        )
        
        gr.Examples(
            examples=[
                {
                    "text": open("./examples/little_girl.txt").read(),
                    "files": ["./examples/little_girl.jpg"]
                },
                {
                    "text": open("./examples/bus_luggage.txt").read(),
                    "files": ["./examples/bus_luggage.jpg"]
                },
            ],
            inputs=[chat_input],
        )        
        
#         gr.Markdown("""
# ## Citation
# ```
# @article{jiang2024mantis,
#   title={MANTIS: Interleaved Multi-Image Instruction Tuning},
#   author={Jiang, Dongfu and He, Xuan and Zeng, Huaye and Wei, Con and Ku, Max and Liu, Qian and Chen, Wenhu},
#   journal={arXiv preprint arXiv:2405.01483},
#   year={2024}
# }
# ```""")
    return demo    
    

if __name__ == "__main__":
    demo = build_demo()
    demo.launch(share=False)