Spaces:
Runtime error
Runtime error
from transformers.configuration_utils import PretrainedConfig | |
from transformers.utils import logging | |
from transformers.models.auto import CONFIG_MAPPING | |
logger = logging.get_logger(__name__) | |
class GeckoConfig(PretrainedConfig): | |
r""" | |
This is the configuration class to store the configuration of a [`LlavaForConditionalGeneration`]. It is used to instantiate an | |
Llava model according to the specified arguments, defining the model architecture. Instantiating a configuration | |
with the defaults will yield a similar configuration to that of the Llava-9B. | |
e.g. [llava-hf/llava-9b](https://huggingface.co/llava-hf/llava-9b) | |
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the | |
documentation from [`PretrainedConfig`] for more information. | |
Args: | |
vision_config (`LlavaVisionConfig`, *optional*): | |
Custom vision config or dict | |
text_config (`Union[AutoConfig, dict]`, *optional*): | |
The config object of the text backbone. Can be any of `LlamaConfig` or `MistralConfig`. | |
ignore_index (`int`, *optional*, defaults to -100): | |
The ignore index for the loss function. | |
image_token_index (`int`, *optional*, defaults to 32000): | |
The image token index to encode the image prompt. | |
projector_hidden_act (`str`, *optional*, defaults to `"gelu"`): | |
The activation function used by the multimodal projector. | |
vision_feature_select_strategy (`str`, *optional*, defaults to `"default"`): | |
The feature selection strategy used to select the vision feature from the CLIP backbone. | |
vision_feature_layer (`int`, *optional*, defaults to -2): | |
The index of the layer to select the vision feature. | |
vocab_size (`int`, *optional*, defaults to 32000): | |
Vocabulary size of the Llava model. Defines the number of different tokens that can be represented by the | |
`inputs_ids` passed when calling [`~LlavaForConditionalGeneration`] | |
""" | |
model_type = "gecko" | |
is_composition = False | |
def __init__( | |
self, | |
vision_config=None, | |
text_config=None, | |
ignore_index=-100, | |
image_token_index=32000, | |
projector_hidden_act="gelu", | |
vision_feature_select_strategy="cls", | |
patch_picking_strategy="across_layers", | |
vision_feature_layer=-2, | |
vocab_size=32000, | |
topk=4, | |
keyword_criteria="template", | |
positional_information="explicit", | |
visualize_patches=False, | |
visualize_topk_patches=False, | |
print_keyword=False, | |
print_topk_patches=False, | |
**kwargs, | |
): | |
self.ignore_index = ignore_index | |
self.image_token_index = image_token_index | |
self.projector_hidden_act = projector_hidden_act | |
self.vision_feature_layer = vision_feature_layer | |
self.vision_feature_select_strategy = vision_feature_select_strategy | |
self.patch_picking_strategy = patch_picking_strategy | |
self.vocab_size = vocab_size | |
self.topk = topk | |
self.vision_config = vision_config | |
self.text_config = text_config | |
self.keyword_criteria = keyword_criteria | |
self.positional_information = positional_information | |
self.visualize_patches = visualize_patches | |
self.visualize_topk_patches = visualize_topk_patches | |
self.print_keyword = print_keyword | |
self.print_topk_patches = print_topk_patches | |
if isinstance(self.vision_config, dict): | |
vision_config["model_type"] = ( | |
vision_config["model_type"] if "model_type" in vision_config else "clip_vision_model" | |
) | |
self.vision_config = CONFIG_MAPPING[vision_config["model_type"]](**vision_config) | |
elif vision_config is None: | |
self.vision_config = CONFIG_MAPPING["clip_vision_model"]( | |
intermediate_size=4096, | |
hidden_size=1024, | |
patch_size=14, | |
image_size=336, | |
num_hidden_layers=24, | |
num_attention_heads=16, | |
vocab_size=32000, | |
projection_dim=768, | |
) | |
self.vocab_size = self.vocab_size | |
self.text_config = text_config | |
if isinstance(self.text_config, dict): | |
text_config["model_type"] = text_config["model_type"] if "model_type" in text_config else "llama" | |
self.text_config = CONFIG_MAPPING[text_config["model_type"]](**text_config) | |
self.vocab_size = self.text_config.vocab_size | |
elif text_config is None: | |
self.text_config = CONFIG_MAPPING["llama"]() | |
super().__init__(**kwargs) |