Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -12,7 +12,7 @@ nltk.download('stopwords')
|
|
12 |
translator = pipeline("translation", model="Helsinki-NLP/opus-mt-id-en")
|
13 |
terjemah = pipeline("translation", model="Helsinki-NLP/opus-mt-en-id")
|
14 |
pipe1 = pipeline("text-generation", model="TinyLlama/TinyLlama-1.1B-Chat-v1.0")
|
15 |
-
pipe2 = pipeline("text-generation", model="SumayyaAli/tiny-llama-1.1b-chat-medical")
|
16 |
|
17 |
# Pra-pemrosesan teks menggunakan NLTK
|
18 |
def pra_pemrosesan_teks(teks):
|
@@ -31,7 +31,7 @@ jenis_kelamin = st.selectbox("Masukkan jenis kelamin Anda:", ["Laki-laki", "Pere
|
|
31 |
gejala_id = st.text_area("Masukkan gejala Anda:")
|
32 |
|
33 |
if st.button("Diagnosa"):
|
34 |
-
if gejala_id
|
35 |
# Terjemahkan gejala dari Indonesia ke Inggris
|
36 |
terjemahan = translator(gejala_id, max_length=100)
|
37 |
gejala_en = terjemahan[0]["translation_text"]
|
@@ -40,7 +40,20 @@ if st.button("Diagnosa"):
|
|
40 |
|
41 |
# Pesan untuk model
|
42 |
pesan = [
|
43 |
-
{"role": "system",
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
44 |
{"role": "user", "content": f"Based on your assessment, {gabungan}, what illness could it be?"}
|
45 |
]
|
46 |
|
@@ -54,18 +67,18 @@ if st.button("Diagnosa"):
|
|
54 |
asisten_konten1 = get_assistant_content(response1)
|
55 |
|
56 |
# Dapatkan respon dari pipe2 (model SumayyaAli)
|
57 |
-
response2 = pipe2(pesan, num_return_sequences=1, truncation=True)
|
58 |
-
asisten_konten2 = get_assistant_content(response2)
|
59 |
|
60 |
# Gabungkan hasil dari pipe1 dan pipe2 untuk pertanyaan akhir
|
61 |
-
pertanyaan_akhir = [{'role': 'user', 'content': f"{asisten_konten1}. {asisten_konten2}. Based on these two sentences, what is your final conclusion of my current symptom? Please provide a brief answer with one diagnosis."}]
|
62 |
|
63 |
# Dapatkan hasil akhir diagnosis
|
64 |
-
hasil_diagnosis = pipe1(pertanyaan_akhir)
|
65 |
-
asisten_konten3 = get_assistant_content(hasil_diagnosis)
|
66 |
|
67 |
# Terjemahkan hasil akhir ke bahasa Indonesia
|
68 |
-
terjemahan_hasil = terjamah(
|
69 |
diagnosa_terjemahan = terjemahan_hasil[0]["translation_text"]
|
70 |
|
71 |
# Tampilkan hasil ke Streamlit
|
|
|
12 |
translator = pipeline("translation", model="Helsinki-NLP/opus-mt-id-en")
|
13 |
terjemah = pipeline("translation", model="Helsinki-NLP/opus-mt-en-id")
|
14 |
pipe1 = pipeline("text-generation", model="TinyLlama/TinyLlama-1.1B-Chat-v1.0")
|
15 |
+
#pipe2 = pipeline("text-generation", model="SumayyaAli/tiny-llama-1.1b-chat-medical")
|
16 |
|
17 |
# Pra-pemrosesan teks menggunakan NLTK
|
18 |
def pra_pemrosesan_teks(teks):
|
|
|
31 |
gejala_id = st.text_area("Masukkan gejala Anda:")
|
32 |
|
33 |
if st.button("Diagnosa"):
|
34 |
+
if gejala_id:
|
35 |
# Terjemahkan gejala dari Indonesia ke Inggris
|
36 |
terjemahan = translator(gejala_id, max_length=100)
|
37 |
gejala_en = terjemahan[0]["translation_text"]
|
|
|
40 |
|
41 |
# Pesan untuk model
|
42 |
pesan = [
|
43 |
+
{"role": "system",
|
44 |
+
"content": """
|
45 |
+
You are a doctor diagnosing patients based on symptoms.
|
46 |
+
|
47 |
+
Example 1:
|
48 |
+
Patient symptoms: High fever, headache, nausea
|
49 |
+
Diagnosis: Dengue fever
|
50 |
+
|
51 |
+
Example 2:
|
52 |
+
Patient symptoms: Shortness of breath, chest pain, cough with phlegm
|
53 |
+
Diagnosis: Pneumonia.
|
54 |
+
|
55 |
+
|
56 |
+
"""},
|
57 |
{"role": "user", "content": f"Based on your assessment, {gabungan}, what illness could it be?"}
|
58 |
]
|
59 |
|
|
|
67 |
asisten_konten1 = get_assistant_content(response1)
|
68 |
|
69 |
# Dapatkan respon dari pipe2 (model SumayyaAli)
|
70 |
+
#response2 = pipe2(pesan, num_return_sequences=1, truncation=True)
|
71 |
+
#asisten_konten2 = get_assistant_content(response2)
|
72 |
|
73 |
# Gabungkan hasil dari pipe1 dan pipe2 untuk pertanyaan akhir
|
74 |
+
#pertanyaan_akhir = [{'role': 'user', 'content': f"{asisten_konten1}. {asisten_konten2}. Based on these two sentences, what is your final conclusion of my current symptom? Please provide a brief answer with one diagnosis."}]
|
75 |
|
76 |
# Dapatkan hasil akhir diagnosis
|
77 |
+
#hasil_diagnosis = pipe1(pertanyaan_akhir)
|
78 |
+
#asisten_konten3 = get_assistant_content(hasil_diagnosis)
|
79 |
|
80 |
# Terjemahkan hasil akhir ke bahasa Indonesia
|
81 |
+
terjemahan_hasil = terjamah(asisten_konten1, max_length=100)
|
82 |
diagnosa_terjemahan = terjemahan_hasil[0]["translation_text"]
|
83 |
|
84 |
# Tampilkan hasil ke Streamlit
|