fashion_demo / app.py
simonhermansson's picture
Added linear reuse and price layers
1420df1
raw
history blame
7.79 kB
import os
import clip
import faiss
import torch
import tarfile
import gradio as gr
import pandas as pd
from PIL import Image
from braceexpand import braceexpand
# Load model
checkpoint_path = "ViT-B/16"
device = "cuda" if torch.cuda.is_available() else "cpu"
model, preprocess = clip.load(checkpoint_path, device=device, jit=False)
def generate_caption(img):
# Load caption bank
df = pd.read_parquet("files/captions.parquet")
caption_list = df["caption"].tolist()
# Load index
index = faiss.read_index("files/caption_bank.index")
# Encode the image and query the caption bank index
query_features = model.encode_image(preprocess(img).unsqueeze(0).to(device))
query_features = query_features / query_features.norm(dim=-1, keepdim=True)
query_features = query_features.cpu().detach().numpy().astype("float32")
# Get nearest captions
d, i = index.search(query_features, 1)
d, i = d[0], i[0]
idx = i[0]
distance = d[0]
# Start with a description of the image
caption = caption_list[idx]
print(f"Index: {idx} - Distance: {distance:.2f}")
return caption
def predict_brand(img):
# Load brand bank
df = pd.read_parquet("files/brands.parquet")
brand_list = df["brands"].tolist()
# Load index
index = faiss.read_index("files/brand_bank.index")
# Encode the image and query the brand bank index
query_features = model.encode_image(preprocess(img).unsqueeze(0).to(device))
query_features = query_features / query_features.norm(dim=-1, keepdim=True)
query_features = query_features.cpu().detach().numpy().astype("float32")
# Get nearest brands
d, i = index.search(query_features, 1)
d, i = d[0], i[0]
idx = i[0]
distance = d[0]
brand = brand_list[idx]
print(f"Index: {idx} - Distance: {distance:.2f}")
return brand
def estimate_price_and_usage(img):
query_features = model.encode_image(preprocess(img).unsqueeze(0).to(device))
# Estimate usage
num_classes = 2
probe = torch.nn.Linear(
query_features.shape[-1],
num_classes,
dtype=torch.float16,
bias=False
)
# Load weights for the linear layer as a tensor
linear_data = torch.load("files/reuse_linear.pth")
probe.weight.data = linear_data["weight"]
# Do inference
probe.eval()
probe = probe.to(device)
output = probe(query_features)
print(output)
output = torch.softmax(output, dim=-1)
output = output.cpu().detach().numpy().astype("float32")
reuse = output.argmax(axis=-1)[0]
reuse_classes = ["Reuse", "Export"]
# Estimate price
num_classes = 4
probe = torch.nn.Linear(
query_features.shape[-1],
num_classes,
dtype=torch.float16,
bias=False
)
# Print output shape for the linear layer
# Load weights for the linear layer as a tensor
linear_data = torch.load("files/price_linear.pth")
probe.weight.data = linear_data["weight"]
# Do inference
probe.eval()
probe = probe.to(device)
output = probe(query_features)
output = torch.softmax(output, dim=-1)
output = output.cpu().detach().numpy().astype("float32")
price = output.argmax(axis=-1)[0]
price_classes = ["<50", "50-100", "100-150", ">150"]
return f"Estimated price: {price_classes[price]} SEK - Usage: {reuse_classes[reuse]}"
def retrieve(query):
index_folder = "files/index"
num_results = 3
# Read image metadata
metadata_df = pd.read_parquet(os.path.join(index_folder, "metadata.parquet"))
key_list = metadata_df["key"].tolist()
# Load the index
index = faiss.read_index(os.path.join(index_folder, "image.index"))
# Encode the query
if isinstance(query, str):
print("Query is a string")
text = clip.tokenize([query]).to(device)
query_features = model.encode_text(text)
else:
print("Query is an image")
query_features = model.encode_image(preprocess(query).unsqueeze(0).to(device))
query_features = query_features / query_features.norm(dim=-1, keepdim=True)
query_features = query_features.cpu().detach().numpy().astype("float32")
d, i = index.search(query_features, num_results)
print(f"Found {num_results} items with query '{query}'")
indices = i[0]
similarities = d[0]
min_d = min(similarities)
max_d = max(similarities)
print(f"The minimum similarity is {min_d:.2f} and the maximum is {max_d:.2f}")
# Uncomment to generate combined.tar, combine the image_tars into a single tarfile
"""
dataset_dir = "/fs/sefs1/circularfashion/sellpy/front_balanced"
image_tars = [os.path.join(dataset_dir, file) for file in sorted(braceexpand("{00000..00010}.tar"))]
with tarfile.open("files/combined.tar", "w") as combined_tar:
for tar in image_tars:
with tarfile.open(tar, "r") as tar_file:
for member in tar_file.getmembers():
combined_tar.addfile(member, tar_file.extractfile(member))
"""
images = []
for idx in indices:
image_name = key_list[idx]
with tarfile.open("files/combined.tar", "r") as tar_file:
image = tar_file.extractfile(f"{image_name}.jpg")
image = Image.open(image).copy()
images.append(image)
return images
theme = gr.Theme.from_hub("JohnSmith9982/small_and_pretty")
with gr.Blocks(
theme=theme,
css="footer {visibility: hidden}",
) as demo:
with gr.Tab("Captioning and Prediction"):
with gr.Row(variant="compact"):
input_img = gr.Image(type="pil", show_label=False)
with gr.Column(min_width="80"):
btn_generate_caption = gr.Button("Create Description").style(size="sm")
generated_caption = gr.Textbox(label="Description", show_label=False)
with gr.Row(variant="compact"):
brand_img = gr.Image(type="pil", show_label=False)
with gr.Column(min_width="80"):
btn_predict_brand = gr.Button("Predict Brand").style(size="sm")
predicted_brand = gr.Textbox(label="Brand", show_label=False)
with gr.Column(variant="compact"):
btn_estimate = gr.Button("Estimate Price and Reuse").style(size="sm")
text_box = gr.Textbox(label="Estimates:", show_label=False)
with gr.Tab("Image Retrieval"):
with gr.Row(variant="compact"):
with gr.Column():
query_img = gr.Image(type="pil", label="Image Query")
btn_image_query = gr.Button("Retrieve Garments").style(size="sm")
img_query_gallery = gr.Gallery(show_label=False).style(rows=1, columns=3)
with gr.Row(variant="compact"):
with gr.Column():
query_text = gr.Textbox(label="Text Query", placeholder="Enter a description")
btn_text_query = gr.Button("Retrieve Garments").style(size="sm")
text_query_gallery = gr.Gallery(show_label=False).style(rows=1, columns=3)
# Listeners
btn_generate_caption.click(fn=generate_caption, inputs=input_img, outputs=generated_caption)
btn_predict_brand.click(fn=predict_brand, inputs=brand_img, outputs=predicted_brand)
btn_estimate.click(fn=estimate_price_and_usage, inputs=input_img, outputs=text_box)
btn_image_query.click(fn=retrieve, inputs=query_img, outputs=img_query_gallery)
btn_text_query.click(fn=retrieve, inputs=query_text, outputs=text_query_gallery)
if __name__ == "__main__":
demo.launch(
# inline=True
)