Commit
·
9122a59
1
Parent(s):
1420df1
Updated so it works on CPU
Browse files
app.py
CHANGED
@@ -12,7 +12,7 @@ from braceexpand import braceexpand
|
|
12 |
|
13 |
# Load model
|
14 |
checkpoint_path = "ViT-B/16"
|
15 |
-
device = "
|
16 |
model, preprocess = clip.load(checkpoint_path, device=device, jit=False)
|
17 |
|
18 |
|
@@ -78,18 +78,18 @@ def estimate_price_and_usage(img):
|
|
78 |
bias=False
|
79 |
)
|
80 |
# Load weights for the linear layer as a tensor
|
81 |
-
linear_data = torch.load("files/reuse_linear.pth")
|
82 |
probe.weight.data = linear_data["weight"]
|
83 |
|
84 |
# Do inference
|
85 |
-
|
86 |
-
|
87 |
-
|
88 |
-
|
89 |
-
|
90 |
-
|
91 |
-
|
92 |
-
|
93 |
|
94 |
# Estimate price
|
95 |
num_classes = 4
|
@@ -101,17 +101,18 @@ def estimate_price_and_usage(img):
|
|
101 |
)
|
102 |
# Print output shape for the linear layer
|
103 |
# Load weights for the linear layer as a tensor
|
104 |
-
linear_data = torch.load("files/price_linear.pth")
|
105 |
probe.weight.data = linear_data["weight"]
|
106 |
|
107 |
# Do inference
|
108 |
-
|
109 |
-
|
110 |
-
|
111 |
-
|
112 |
-
|
113 |
-
|
114 |
-
|
|
|
115 |
|
116 |
return f"Estimated price: {price_classes[price]} SEK - Usage: {reuse_classes[reuse]}"
|
117 |
|
|
|
12 |
|
13 |
# Load model
|
14 |
checkpoint_path = "ViT-B/16"
|
15 |
+
device = "cpu"
|
16 |
model, preprocess = clip.load(checkpoint_path, device=device, jit=False)
|
17 |
|
18 |
|
|
|
78 |
bias=False
|
79 |
)
|
80 |
# Load weights for the linear layer as a tensor
|
81 |
+
linear_data = torch.load("files/reuse_linear.pth", map_location="cpu")
|
82 |
probe.weight.data = linear_data["weight"]
|
83 |
|
84 |
# Do inference
|
85 |
+
with torch.autocast("cpu"):
|
86 |
+
probe.eval()
|
87 |
+
probe = probe.to(device)
|
88 |
+
output = probe(query_features)
|
89 |
+
output = torch.softmax(output, dim=-1)
|
90 |
+
#output = output.cpu().detach().numpy().astype("float32")
|
91 |
+
reuse = output.argmax(axis=-1)[0]
|
92 |
+
reuse_classes = ["Reuse", "Export"]
|
93 |
|
94 |
# Estimate price
|
95 |
num_classes = 4
|
|
|
101 |
)
|
102 |
# Print output shape for the linear layer
|
103 |
# Load weights for the linear layer as a tensor
|
104 |
+
linear_data = torch.load("files/price_linear.pth", map_location="cpu")
|
105 |
probe.weight.data = linear_data["weight"]
|
106 |
|
107 |
# Do inference
|
108 |
+
with torch.autocast("cpu"):
|
109 |
+
probe.eval()
|
110 |
+
probe = probe.to(device)
|
111 |
+
output = probe(query_features)
|
112 |
+
output = torch.softmax(output, dim=-1)
|
113 |
+
#output = output.cpu().detach().numpy().astype("float32")
|
114 |
+
price = output.argmax(axis=-1)[0]
|
115 |
+
price_classes = ["<50", "50-100", "100-150", ">150"]
|
116 |
|
117 |
return f"Estimated price: {price_classes[price]} SEK - Usage: {reuse_classes[reuse]}"
|
118 |
|