File size: 3,671 Bytes
4b4bdb0
 
b141d5b
4b4bdb0
fcd1ba4
4b4bdb0
fcd1ba4
4b4bdb0
 
 
0cf4b8d
fcd1ba4
ee59b20
 
 
 
 
3d9332b
ee59b20
0cf4b8d
4b4bdb0
fcd1ba4
 
 
 
 
 
 
 
 
 
 
ee59b20
 
fcd1ba4
 
 
 
 
87af32a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b141d5b
fcd1ba4
 
 
 
 
 
 
 
 
 
 
aacc262
 
fcd1ba4
 
 
 
 
 
 
 
 
 
 
 
 
0cf4b8d
 
 
 
 
fcd1ba4
 
 
 
 
 
 
0cf4b8d
fcd1ba4
 
 
 
 
0cf4b8d
fcd1ba4
 
 
 
93cb0e6
fcd1ba4
 
 
 
 
4b4bdb0
 
0cf4b8d
93cb0e6
0cf4b8d
 
 
4b4bdb0
fcd1ba4
0cf4b8d
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
import json
import os
import time
from pathlib import Path

import anthropic
import gradio as gr
import numpy as np
from dotenv import load_dotenv
from elevenlabs import ElevenLabs
from fastapi import FastAPI
from fastapi.responses import HTMLResponse, StreamingResponse
from fastrtc import (
    AdditionalOutputs,
    ReplyOnPause,
    Stream,
    get_tts_model,
    get_twilio_turn_credentials,
)
from fastrtc.utils import audio_to_bytes
from gradio.utils import get_space
from groq import Groq
from pydantic import BaseModel

load_dotenv()

groq_client = Groq()
claude_client = anthropic.Anthropic()
tts_client = ElevenLabs(api_key=os.environ["ELEVENLABS_API_KEY"])

curr_dir = Path(__file__).parent

tts_model = get_tts_model()


def response(
    audio: tuple[int, np.ndarray],
    chatbot: list[dict] | None = None,
):
    chatbot = chatbot or []
    messages = [{"role": d["role"], "content": d["content"]} for d in chatbot]
    prompt = groq_client.audio.transcriptions.create(
        file=("audio-file.mp3", audio_to_bytes(audio)),
        model="whisper-large-v3-turbo",
        response_format="verbose_json",
    ).text
    chatbot.append({"role": "user", "content": prompt})
    yield AdditionalOutputs(chatbot)
    messages.append({"role": "user", "content": prompt})
    response = claude_client.messages.create(
        model="claude-3-5-haiku-20241022",
        max_tokens=512,
        messages=messages,  # type: ignore
    )
    response_text = " ".join(
        block.text  # type: ignore
        for block in response.content
        if getattr(block, "type", None) == "text"
    )
    chatbot.append({"role": "assistant", "content": response_text})

    start = time.time()

    print("starting tts", start)
    for i, chunk in enumerate(tts_model.stream_tts_sync(response_text)):
        print("chunk", i, time.time() - start)
        yield chunk
        print("finished tts", time.time() - start)
        yield AdditionalOutputs(chatbot)


chatbot = gr.Chatbot(type="messages")
stream = Stream(
    modality="audio",
    mode="send-receive",
    handler=ReplyOnPause(response),
    additional_outputs_handler=lambda a, b: b,
    additional_inputs=[chatbot],
    additional_outputs=[chatbot],
    rtc_configuration=get_twilio_turn_credentials() if get_space() else None,
    concurrency_limit=5 if get_space() else None,
    time_limit=90 if get_space() else None,
)


class Message(BaseModel):
    role: str
    content: str


class InputData(BaseModel):
    webrtc_id: str
    chatbot: list[Message]


app = FastAPI()
stream.mount(app)


@app.get("/")
async def _():
    rtc_config = get_twilio_turn_credentials() if get_space() else None
    html_content = (curr_dir / "index.html").read_text()
    html_content = html_content.replace("__RTC_CONFIGURATION__", json.dumps(rtc_config))
    return HTMLResponse(content=html_content, status_code=200)


@app.post("/input_hook")
async def _(body: InputData):
    stream.set_input(body.webrtc_id, body.model_dump()["chatbot"])
    return {"status": "ok"}


@app.get("/outputs")
def _(webrtc_id: str):
    async def output_stream():
        async for output in stream.output_stream(webrtc_id):
            chatbot = output.args[0]
            yield f"event: output\ndata: {json.dumps(chatbot[-1])}\n\n"

    return StreamingResponse(output_stream(), media_type="text/event-stream")


if __name__ == "__main__":
    import os

    if (mode := os.getenv("MODE")) == "UI":
        stream.ui.launch(server_port=7860, server_name="0.0.0.0")
    elif mode == "PHONE":
        stream.fastphone(host="0.0.0.0", port=7860)
    else:
        import uvicorn

        uvicorn.run(app, host="0.0.0.0", port=7860)