talk-to-llama4 / app.py
freddyaboulton's picture
Upload folder using huggingface_hub
07e0298 verified
import json
import os
from pathlib import Path
import gradio as gr
import numpy as np
from dotenv import load_dotenv
from fastapi import FastAPI
from fastapi.responses import HTMLResponse, StreamingResponse
from fastrtc import (
AdditionalOutputs,
ReplyOnPause,
Stream,
audio_to_bytes,
get_cloudflare_turn_credentials_async,
get_current_context,
get_tts_model,
)
from groq import Groq
from numpy.typing import NDArray
curr_dir = Path(__file__).parent
load_dotenv()
tts_model = get_tts_model()
groq = Groq(api_key=os.getenv("GROQ_API_KEY"))
conversations: dict[str, list[dict[str, str]]] = {}
def response(user_audio: tuple[int, NDArray[np.int16]]):
context = get_current_context()
if context.webrtc_id not in conversations:
conversations[context.webrtc_id] = [
{
"role": "system",
"content": (
"You are a helpful assistant that can answer questions and help with tasks."
'Please return a short (that will be converted to audio using a text-to-speech model) response and long response to this question. They can be the same if appropriate. Please return in JSON format\n\n{"short":, "long"}\n\n'
),
}
]
messages = conversations[context.webrtc_id]
transcription = groq.audio.transcriptions.create(
file=("audio.wav", audio_to_bytes(user_audio)),
model="distil-whisper-large-v3-en",
response_format="verbose_json",
)
print(transcription.text)
messages.append({"role": "user", "content": transcription.text})
completion = groq.chat.completions.create( # type: ignore
model="meta-llama/llama-4-scout-17b-16e-instruct",
messages=messages, # type: ignore
temperature=1,
max_completion_tokens=1024,
top_p=1,
stream=False,
response_format={"type": "json_object"},
stop=None,
)
response = completion.choices[0].message.content
response = json.loads(response)
short_response = response["short"]
long_response = response["long"]
messages.append({"role": "assistant", "content": long_response})
conversations[context.webrtc_id] = messages
yield from tts_model.stream_tts_sync(short_response)
yield AdditionalOutputs(messages)
stream = Stream(
ReplyOnPause(response),
modality="audio",
mode="send-receive",
additional_outputs=[gr.Chatbot(type="messages")],
additional_outputs_handler=lambda old, new: new,
rtc_configuration=get_cloudflare_turn_credentials_async,
)
app = FastAPI()
stream.mount(app)
@app.get("/")
async def _():
rtc_config = await get_cloudflare_turn_credentials_async()
html_content = (curr_dir / "index.html").read_text()
html_content = html_content.replace("__RTC_CONFIGURATION__", json.dumps(rtc_config))
return HTMLResponse(content=html_content)
@app.get("/outputs")
async def _(webrtc_id: str):
async def output_stream():
async for output in stream.output_stream(webrtc_id):
state = output.args[0]
for msg in state[-2:]:
data = {
"message": msg,
}
yield f"event: output\ndata: {json.dumps(data)}\n\n"
return StreamingResponse(output_stream(), media_type="text/event-stream")
if __name__ == "__main__":
import os
if (mode := os.getenv("MODE")) == "UI":
stream.ui.launch(server_port=7860)
elif mode == "PHONE":
raise ValueError("Phone mode not supported")
else:
import uvicorn
uvicorn.run(app, host="0.0.0.0", port=7860)