File size: 5,549 Bytes
0445c20
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c35600d
 
 
 
 
 
8b1f0bb
 
0445c20
 
8b1f0bb
 
 
 
 
 
 
 
 
 
 
 
 
c35600d
 
 
8b1f0bb
c35600d
8b1f0bb
 
 
 
c35600d
8b1f0bb
 
 
 
 
 
 
 
 
 
 
 
c35600d
 
8b1f0bb
 
c35600d
 
 
 
 
8b1f0bb
 
c35600d
 
 
 
8b1f0bb
c35600d
 
8b1f0bb
c35600d
 
 
 
 
 
 
 
 
8b1f0bb
c35600d
 
 
 
 
8b1f0bb
 
c35600d
 
 
 
 
 
 
8b1f0bb
c35600d
8b1f0bb
c35600d
 
 
0445c20
8b1f0bb
0445c20
 
 
 
 
 
 
 
 
8b1f0bb
 
 
0445c20
 
 
8b1f0bb
 
0445c20
8b1f0bb
 
c35600d
0445c20
c35600d
 
 
0445c20
 
c35600d
 
8b1f0bb
 
c35600d
 
8b1f0bb
0445c20
45afa26
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
Hugging Face's logo
Hugging Face
Search models, datasets, users...
Models
Datasets
Spaces
Docs
Solutions
Pricing



Spaces:

zjhcr
/
ChatGPTwithAPI Copied
like
0
App
Files and versions
Community
ChatGPTwithAPI
/
app.py
zjhcr's picture
zjhcr
Duplicate from ysharma/ChatGPTwithAPI
659118f
about 10 hours ago
raw
history
blame
contribute
delete
No virus
5.37 kB
import gradio as gr
import os 
import json 
import requests

#Streaming endpoint 
API_URL = "https://api.openai.com/v1/chat/completions" #os.getenv("API_URL") + "/generate_stream"

#Testing with my Open AI Key 
#OPENAI_API_KEY = os.getenv("OPENAI_API_KEY") 

def predict(inputs, top_p, temperature, openai_api_key, chat_counter, chatbot=[], history=[]):  #repetition_penalty, top_k

    payload = {
    "model": "gpt-3.5-turbo",
    "messages": [{"role": "user", "content": f"{inputs}"}],
    "temperature" : 1.0,
    "top_p":1.0,
    "n" : 1,
    "stream": True,
    "presence_penalty":0,
    "frequency_penalty":0,
    }

    headers = {
    "Content-Type": "application/json",
    "Authorization": f"Bearer {openai_api_key}"
    }

    print(f"chat_counter - {chat_counter}")
    if chat_counter != 0 :
        messages=[]
        for data in chatbot:
          temp1 = {}
          temp1["role"] = "user" 
          temp1["content"] = data[0] 
          temp2 = {}
          temp2["role"] = "assistant" 
          temp2["content"] = data[1]
          messages.append(temp1)
          messages.append(temp2)
        temp3 = {}
        temp3["role"] = "user" 
        temp3["content"] = inputs
        messages.append(temp3)
        #messages
        payload = {
        "model": "gpt-3.5-turbo",
        "messages": messages, #[{"role": "user", "content": f"{inputs}"}],
        "temperature" : temperature, #1.0,
        "top_p": top_p, #1.0,
        "n" : 1,
        "stream": True,
        "presence_penalty":0,
        "frequency_penalty":0,
        }

    chat_counter+=1

    history.append(inputs)
    print(f"payload is - {payload}")
    # make a POST request to the API endpoint using the requests.post method, passing in stream=True
    response = requests.post(API_URL, headers=headers, json=payload, stream=True)
    #response = requests.post(API_URL, headers=headers, json=payload, stream=True)
    token_counter = 0 
    partial_words = "" 

    counter=0
    for chunk in response.iter_lines():
        #Skipping first chunk
        if counter == 0:
          counter+=1
          continue
        #counter+=1
        # check whether each line is non-empty
        if chunk.decode() :
          chunk = chunk.decode()
          # decode each line as response data is in bytes
          if len(chunk) > 12 and "content" in json.loads(chunk[6:])['choices'][0]['delta']:
              #if len(json.loads(chunk.decode()[6:])['choices'][0]["delta"]) == 0:
              #  break
              partial_words = partial_words + json.loads(chunk[6:])['choices'][0]["delta"]["content"]
              if token_counter == 0:
                history.append(" " + partial_words)
              else:
                history[-1] = partial_words
              chat = [(history[i], history[i + 1]) for i in range(0, len(history) - 1, 2) ]  # convert to tuples of list
              token_counter+=1
              yield chat, history, chat_counter  # resembles {chatbot: chat, state: history}  
                   

def reset_textbox():
    return gr.update(value='')

title = """<h1 align="center">🔥ChatGPT API 🚀Streaming🚀</h1>"""
description = """Language models can be conditioned to act like dialogue agents through a conversational prompt that typically takes the form:
```
User: <utterance>
Assistant: <utterance>
User: <utterance>
Assistant: <utterance>
...
```
In this app, you can explore the outputs of a gpt-3.5-turbo LLM.
"""
                
with gr.Blocks(css = """#col_container {width: 1000px; margin-left: auto; margin-right: auto;}
                #chatbot {height: 520px; overflow: auto;}""") as demo:
    gr.HTML(title)
    gr.HTML('''<center><Lisa's Chatbot></center>''')
    with gr.Column(elem_id = "col_container"):
        openai_api_key = gr.Textbox(type='password', label="Enter your OpenAI API key here")
        chatbot = gr.Chatbot(elem_id='chatbot') #c
        inputs = gr.Textbox(placeholder= "Hi there!", label= "Type an input and press Enter") #t
        state = gr.State([]) #s
        b1 = gr.Button()
    
        #inputs, top_p, temperature, top_k, repetition_penalty
        with gr.Accordion("Parameters", open=False):
            top_p = gr.Slider( minimum=-0, maximum=1.0, value=1.0, step=0.05, interactive=True, label="Top-p (nucleus sampling)",)
            temperature = gr.Slider( minimum=-0, maximum=5.0, value=1.0, step=0.1, interactive=True, label="Temperature",)
            #top_k = gr.Slider( minimum=1, maximum=50, value=4, step=1, interactive=True, label="Top-k",)
            #repetition_penalty = gr.Slider( minimum=0.1, maximum=3.0, value=1.03, step=0.01, interactive=True, label="Repetition Penalty", )
            chat_counter = gr.Number(value=0, visible=False, precision=0)

    inputs.submit( predict, [inputs, top_p, temperature, openai_api_key, chat_counter, chatbot, state], [chatbot, state, chat_counter],)
    b1.click( predict, [inputs, top_p, temperature, openai_api_key, chat_counter, chatbot, state], [chatbot, state, chat_counter],)
    b1.click(reset_textbox, [], [inputs])
    inputs.submit(reset_textbox, [], [inputs])
                    
    #gr.Markdown(description)
    demo.queue().launch(debug=True)