Spaces:
Runtime error
Runtime error
File size: 5,549 Bytes
0445c20 c35600d 8b1f0bb 0445c20 8b1f0bb c35600d 8b1f0bb c35600d 8b1f0bb c35600d 8b1f0bb c35600d 8b1f0bb c35600d 8b1f0bb c35600d 8b1f0bb c35600d 8b1f0bb c35600d 8b1f0bb c35600d 8b1f0bb c35600d 8b1f0bb c35600d 8b1f0bb c35600d 0445c20 8b1f0bb 0445c20 8b1f0bb 0445c20 8b1f0bb 0445c20 8b1f0bb c35600d 0445c20 c35600d 0445c20 c35600d 8b1f0bb c35600d 8b1f0bb 0445c20 45afa26 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 |
Hugging Face's logo
Hugging Face
Search models, datasets, users...
Models
Datasets
Spaces
Docs
Solutions
Pricing
Spaces:
zjhcr
/
ChatGPTwithAPI Copied
like
0
App
Files and versions
Community
ChatGPTwithAPI
/
app.py
zjhcr's picture
zjhcr
Duplicate from ysharma/ChatGPTwithAPI
659118f
about 10 hours ago
raw
history
blame
contribute
delete
No virus
5.37 kB
import gradio as gr
import os
import json
import requests
#Streaming endpoint
API_URL = "https://api.openai.com/v1/chat/completions" #os.getenv("API_URL") + "/generate_stream"
#Testing with my Open AI Key
#OPENAI_API_KEY = os.getenv("OPENAI_API_KEY")
def predict(inputs, top_p, temperature, openai_api_key, chat_counter, chatbot=[], history=[]): #repetition_penalty, top_k
payload = {
"model": "gpt-3.5-turbo",
"messages": [{"role": "user", "content": f"{inputs}"}],
"temperature" : 1.0,
"top_p":1.0,
"n" : 1,
"stream": True,
"presence_penalty":0,
"frequency_penalty":0,
}
headers = {
"Content-Type": "application/json",
"Authorization": f"Bearer {openai_api_key}"
}
print(f"chat_counter - {chat_counter}")
if chat_counter != 0 :
messages=[]
for data in chatbot:
temp1 = {}
temp1["role"] = "user"
temp1["content"] = data[0]
temp2 = {}
temp2["role"] = "assistant"
temp2["content"] = data[1]
messages.append(temp1)
messages.append(temp2)
temp3 = {}
temp3["role"] = "user"
temp3["content"] = inputs
messages.append(temp3)
#messages
payload = {
"model": "gpt-3.5-turbo",
"messages": messages, #[{"role": "user", "content": f"{inputs}"}],
"temperature" : temperature, #1.0,
"top_p": top_p, #1.0,
"n" : 1,
"stream": True,
"presence_penalty":0,
"frequency_penalty":0,
}
chat_counter+=1
history.append(inputs)
print(f"payload is - {payload}")
# make a POST request to the API endpoint using the requests.post method, passing in stream=True
response = requests.post(API_URL, headers=headers, json=payload, stream=True)
#response = requests.post(API_URL, headers=headers, json=payload, stream=True)
token_counter = 0
partial_words = ""
counter=0
for chunk in response.iter_lines():
#Skipping first chunk
if counter == 0:
counter+=1
continue
#counter+=1
# check whether each line is non-empty
if chunk.decode() :
chunk = chunk.decode()
# decode each line as response data is in bytes
if len(chunk) > 12 and "content" in json.loads(chunk[6:])['choices'][0]['delta']:
#if len(json.loads(chunk.decode()[6:])['choices'][0]["delta"]) == 0:
# break
partial_words = partial_words + json.loads(chunk[6:])['choices'][0]["delta"]["content"]
if token_counter == 0:
history.append(" " + partial_words)
else:
history[-1] = partial_words
chat = [(history[i], history[i + 1]) for i in range(0, len(history) - 1, 2) ] # convert to tuples of list
token_counter+=1
yield chat, history, chat_counter # resembles {chatbot: chat, state: history}
def reset_textbox():
return gr.update(value='')
title = """<h1 align="center">🔥ChatGPT API 🚀Streaming🚀</h1>"""
description = """Language models can be conditioned to act like dialogue agents through a conversational prompt that typically takes the form:
```
User: <utterance>
Assistant: <utterance>
User: <utterance>
Assistant: <utterance>
...
```
In this app, you can explore the outputs of a gpt-3.5-turbo LLM.
"""
with gr.Blocks(css = """#col_container {width: 1000px; margin-left: auto; margin-right: auto;}
#chatbot {height: 520px; overflow: auto;}""") as demo:
gr.HTML(title)
gr.HTML('''<center><Lisa's Chatbot></center>''')
with gr.Column(elem_id = "col_container"):
openai_api_key = gr.Textbox(type='password', label="Enter your OpenAI API key here")
chatbot = gr.Chatbot(elem_id='chatbot') #c
inputs = gr.Textbox(placeholder= "Hi there!", label= "Type an input and press Enter") #t
state = gr.State([]) #s
b1 = gr.Button()
#inputs, top_p, temperature, top_k, repetition_penalty
with gr.Accordion("Parameters", open=False):
top_p = gr.Slider( minimum=-0, maximum=1.0, value=1.0, step=0.05, interactive=True, label="Top-p (nucleus sampling)",)
temperature = gr.Slider( minimum=-0, maximum=5.0, value=1.0, step=0.1, interactive=True, label="Temperature",)
#top_k = gr.Slider( minimum=1, maximum=50, value=4, step=1, interactive=True, label="Top-k",)
#repetition_penalty = gr.Slider( minimum=0.1, maximum=3.0, value=1.03, step=0.01, interactive=True, label="Repetition Penalty", )
chat_counter = gr.Number(value=0, visible=False, precision=0)
inputs.submit( predict, [inputs, top_p, temperature, openai_api_key, chat_counter, chatbot, state], [chatbot, state, chat_counter],)
b1.click( predict, [inputs, top_p, temperature, openai_api_key, chat_counter, chatbot, state], [chatbot, state, chat_counter],)
b1.click(reset_textbox, [], [inputs])
inputs.submit(reset_textbox, [], [inputs])
#gr.Markdown(description)
demo.queue().launch(debug=True)
|