File size: 1,024 Bytes
9083c84
dd9022d
a5d600a
37d7b31
dd9022d
bd6aadd
a5d600a
bd6aadd
 
3ee0620
 
 
42c37e7
dd9022d
bd6aadd
3ee0620
bd6aadd
3ee0620
bd6aadd
3ee0620
bd6aadd
 
3ee0620
bd6aadd
 
3ee0620
a5d600a
3ee0620
95eb069
 
 
a5d600a
bd6aadd
3ee0620
 
 
24a063c
a5d600a
3ee0620
a5d600a
 
3ee0620
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
import gradio as gr
import json 
import os
from llama_index import SimpleDirectoryReader, GPTListIndex, readers, GPTSimpleVectorIndex, LLMPredictor, PromptHelper
from langchain import OpenAI
import sys

from IPython.display import Markdown, display




def construct_index(directory_path):

    max_input_size = 4096

    num_outputs = 2000

    max_chunk_overlap = 20

    chunk_size_limit = 600


    llm_predictor = LLMPredictor(llm=OpenAI(temperature=0.5, model_name="gpt-3.5-turbo", max_tokens=num_outputs))
    prompt_helper = PromptHelper(max_input_size, num_outputs, max_chunk_overlap, chunk_size_limit=chunk_size_limit)

    
def ask_ai(question,api):
    index = GPTSimpleVectorIndex.load_from_disk('index.json')
    response = index.query(question, response_mode="compact")
    return response.response


os.environ["OPENAI_API_KEY"] = "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"

construct_index("data")


iface = gr.Interface(fn=ask_ai, inputs="text", outputs="text" ,title="Chatbot")


iface.launch()