File size: 1,094 Bytes
9083c84
dd9022d
37d7b31
dd9022d
bd6aadd
d202df9
bd6aadd
 
42c37e7
dd9022d
bd6aadd
dd9022d
bd6aadd
dd9022d
bd6aadd
dd9022d
bd6aadd
 
dd9022d
bd6aadd
 
 
95eb069
f70992e
 
 
 
95eb069
 
 
 
bd6aadd
5307d1c
bd6aadd
f70992e
24a063c
f70992e
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
import gradio as gr
import json 
from llama_index import SimpleDirectoryReader, GPTListIndex, readers, GPTSimpleVectorIndex, LLMPredictor, PromptHelper
from langchain import OpenAI
import sys
import os
from IPython.display import Markdown, display

def construct_index(directory_path):

    max_input_size = 4096

    num_outputs = 2000

    max_chunk_overlap = 20

    chunk_size_limit = 600


    llm_predictor = LLMPredictor(llm=OpenAI(temperature=0.5, model_name="gpt-3.5-turbo", max_tokens=num_outputs))
    prompt_helper = PromptHelper(max_input_size, num_outputs, max_chunk_overlap, chunk_size_limit=chunk_size_limit)


def ask_ai(question, api_key):
    if api_key == "":
        api_key = "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"
    os.environ["OPENAI_API_KEY"] = api_key
    index = GPTSimpleVectorIndex.load_from_disk('index.json')
    response = index.query(question, response_mode="compact")
    return response.response
       

construct_index("data")

iface = gr.Interface(fn=ask_ai, inputs=["text", "text"] ,outputs="text", title="Jim's Chatbot")

iface.launch()