import gradio as gr from llama_index import SimpleDirectoryReader, GPTListIndex, readers, GPTSimpleVectorIndex, LLMPredictor, PromptHelper from langchain import OpenAI import sys import os from IPython.display import Markdown, display def construct_index(directory_path): max_input_size = 4096 num_outputs = 2000 max_chunk_overlap = 20 chunk_size_limit = 600 llm_predictor = LLMPredictor(llm=OpenAI(temperature=0.5, model_name="gpt-3.5-turbo", max_tokens=num_outputs)) prompt_helper = PromptHelper(max_input_size, num_outputs, max_chunk_overlap, chunk_size_limit=chunk_size_limit) documents = SimpleDirectoryReader(directory_path).load_data() index = GPTSimpleVectorIndex.from_documents(documents) index.save_to_disk('index.json') return index def ask_ai(): index = GPTSimpleVectorIndex.load_from_disk('index.json') while True: query = input("What do you want to ask? ") response = index.query(query, response_mode="compact") display(Markdown(f"Response: {response.response}")) os.environ["OPENAI_API_KEY"] = "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" construct_index("context_data") iface = gr.Interface(fn=ask_ai, inputs="text", outputs="text" ,title="Chatbot") iface.launch()