import gradio as gr import json import os from llama_index import SimpleDirectoryReader, GPTListIndex, readers, GPTSimpleVectorIndex, LLMPredictor, PromptHelper from langchain import OpenAI import sys from IPython.display import Markdown, display def construct_index(directory_path): max_input_size = 4096 num_outputs = 2000 max_chunk_overlap = 20 chunk_size_limit = 600 llm_predictor = LLMPredictor(llm=OpenAI(temperature=0.5, model_name="gpt-3.5-turbo", max_tokens=num_outputs)) prompt_helper = PromptHelper(max_input_size, num_outputs, max_chunk_overlap, chunk_size_limit=chunk_size_limit) def ask_ai(question, api_key): os.environ["OPENAI_API_KEY"] = api_key index = GPTSimpleVectorIndex.load_from_disk('index.json') response = index.query(question, response_mode="compact") return response.response construct_index("data") api_key_input = gr.inputs.Textbox(label="Enter your OpenAI API Key") question_input = gr.inputs.Textbox(label="Ask a question") output_text = gr.outputs.Textbox(label="Answer") iface = gr.Interface(fn=ask_ai, inputs=[question_input, api_key_input], outputs=output_text, title="OpenAI Chatbot") iface.launch()