fatmata commited on
Commit
d55014d
·
verified ·
1 Parent(s): a9af171

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +24 -54
app.py CHANGED
@@ -1,64 +1,34 @@
1
- import gradio as gr
2
- from huggingface_hub import InferenceClient
 
3
 
4
- """
5
- For more information on `huggingface_hub` Inference API support, please check the docs: https://huggingface.co/docs/huggingface_hub/v0.22.2/en/guides/inference
6
- """
7
- client = InferenceClient("HuggingFaceH4/zephyr-7b-beta")
8
 
 
 
 
 
9
 
10
- def respond(
11
- message,
12
- history: list[tuple[str, str]],
13
- system_message,
14
- max_tokens,
15
- temperature,
16
- top_p,
17
- ):
18
- messages = [{"role": "system", "content": system_message}]
19
 
20
- for val in history:
21
- if val[0]:
22
- messages.append({"role": "user", "content": val[0]})
23
- if val[1]:
24
- messages.append({"role": "assistant", "content": val[1]})
25
 
26
- messages.append({"role": "user", "content": message})
 
 
27
 
28
- response = ""
 
29
 
30
- for message in client.chat_completion(
31
- messages,
32
- max_tokens=max_tokens,
33
- stream=True,
34
- temperature=temperature,
35
- top_p=top_p,
36
- ):
37
- token = message.choices[0].delta.content
38
-
39
- response += token
40
- yield response
41
-
42
-
43
- """
44
- For information on how to customize the ChatInterface, peruse the gradio docs: https://www.gradio.app/docs/chatinterface
45
- """
46
- demo = gr.ChatInterface(
47
- respond,
48
- additional_inputs=[
49
- gr.Textbox(value="You are a friendly Chatbot.", label="System message"),
50
- gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"),
51
- gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
52
- gr.Slider(
53
- minimum=0.1,
54
- maximum=1.0,
55
- value=0.95,
56
- step=0.05,
57
- label="Top-p (nucleus sampling)",
58
- ),
59
- ],
60
- )
61
 
 
62
 
63
  if __name__ == "__main__":
64
- demo.launch()
 
1
+ from flask import Flask, request, jsonify
2
+ from transformers import AutoModelForCausalLM, AutoTokenizer
3
+ import torch
4
 
5
+ app = Flask(__name__)
 
 
 
6
 
7
+ # Charger le modèle depuis Hugging Face
8
+ MODEL_NAME = "fatmata/psybot" # Remplace avec le vrai nom de ton modèle
9
+ tokenizer = AutoTokenizer.from_pretrained(MODEL_NAME)
10
+ model = AutoModelForCausalLM.from_pretrained(MODEL_NAME, torch_dtype=torch.float16)
11
 
12
+ @app.route("/chat", methods=["POST"])
13
+ def chat():
14
+ data = request.json
15
+ user_input = data.get("message", "")
 
 
 
 
 
16
 
17
+ if not user_input:
18
+ return jsonify({"error": "Message vide"}), 400
 
 
 
19
 
20
+ # Génération de la réponse
21
+ prompt = f"<|startoftext|><|user|> {user_input} <|bot|>"
22
+ inputs = tokenizer(prompt, return_tensors="pt").input_ids.to(model.device)
23
 
24
+ with torch.no_grad():
25
+ output = model.generate(inputs, max_new_tokens=100, pad_token_id=tokenizer.eos_token_id)
26
 
27
+ response = tokenizer.decode(output[0], skip_special_tokens=True)
28
+ if "<|bot|>" in response:
29
+ response = response.split("<|bot|>")[-1].strip()
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
30
 
31
+ return jsonify({"response": response})
32
 
33
  if __name__ == "__main__":
34
+ app.run(host="0.0.0.0", port=7860)